
 1

December 1999
Cs240b Project Report

PTMPI

Threaded MPI Execution on
Cluster of SMP machines

Zoran Dimitrijevic
zoran@cs.ucsb.edu

Department of Computer Science

University of California at Santa Barbara

Abstract

This paper presents the design and performance
evaluation of multithreaded standard MPI library
implementation for cluster of SMP machines. The
paper proposes shared memory communication
between the MPI nodes running on the same SMP
machine and socket communication only between
the processes on the different machines. The
performance evaluation is performed and
performance improvements over standard MPI
[MPICH] implementation are presented at the end
of the paper.

1. Introduction
Cluster of SMP machines has become the
attractive platform for scientific and parallel
computing. Each node in the cluster is SMP
shared memory machine, and communication
between the nodes is usually through the fast
network that provides TCP/IP.

Standard MPI implementation is not optimized
for cluster of SMP machines, since each MPI
node is implemented as separate operating system
process, and communication between the MPI
nodes on the same SMP machine is inefficient.

Better performance can be achieved if each node
on the SMP machine is just a thread and not
separate process. Paper about threaded
implementation of MPI for shared memory
machines [TMPI] proposes that each MPI node
should be thread inside one process, which
provides significant performance benefit.

The multithreaded MPI implementation is
possible only on the globally shared memory
machines. Cluster of SMP machines does not
provide shared memory between the nodes, and
exclusive shared memory communication is not
possible.

 2

Significant performance benefit can be achieved
if communication between the MPI nodes
running on the same SMP machines is through
shared memory, and between the processes only
if the processes are running on different SMP
machines in the cluster.

2. Problem Statement
Standard MPI implementation does not take
advantage of the cluster platform. Exclusive
multithreaded implementation is not possible
since cluster does not have shared memory. Goal
of this research is to develop the library and
examine performance benefits over the standard
MPI implementation used on clusters now, if the
combined approach is used.

3. Proposed Solution
MPI implementation presented in this paper is
shown on Figure 1. System consists of several
processes. Each process can run on different
machine. Communication between the processes
is through standard sockets, and the
interconnection network can be anything that
provides socket interface.

Each MPI node is a thread inside a process.
Communication between the MPI nodes inside
the same process is trough queues in shared
memory. Each process has two communicators
threads, which provide the communication
between the processes in the system.

During the system startup the processes are
created, and complete graph of sockets is
established for inter-process communication. This
approach is used since the overhead of
communication through the socket is minimized.
There are p(p-1)/2 sockets in the system after
startup procedure, where p is the number of
processes in the system. Each process can have
different number of MPI node threads running
inside it, and two additional threads for in and out
socket communication.

Each process creates one thread per each MPI
node to be run inside it, and creates the new
instance of the class MPI_Node inside the thread.
All global data are duplicated for each thread
since MPI standard provides SPMD paradigm.
Each MPI node thread calls mpi_main function
and the actual computing is started.

 Figure 1: PTMPI System Layout

out

in

MPI
node

MPI
node

MPI
node

Process 1: IP1

Process 2: IP2

Process 0: IP0

Sockets

MPI
node

MPI
node

MPI
node

MPI
node

MPI
node

MPI
node

MPI
node

MPI
node

in out

in

out

 3

Layout of the process in the system is shown on
Figure 2. In communicator receives messages
from other processes in the system and
dispatches them to destination thread. There are
two queues per each MPI node thread.

One queue is used for storing receive request
issued by that thread before message arrival.

The other queue is for storing the information
about the messages arrived before MPI node
thread issued the receive request.

If the send is buffered the message is copied to
the buffer which will be deallocated by the
receiver receive function. If the send is not
buffered the receiver receive function will signal
sender when the message is copied to receiver
local memory.

Messages to the MPI node inside the same
process are managed by the sender thread, and
all messages for non-local MPI node (running
inside different process) are stored on the queue
for that process and to be send by the out
communicator thread. Out communicator thread
sends all messages on the outgoing queues
through appropriate socket to the destination
process.

Broadcast request sends the message to each
MPI node thread, and to all outgoing queues. In
communicator sends the broadcast message to all
local MPI node threads, and since the
communication is through the shared memory,
the unnecessary copy is avoided.

 Figure 2: Process Layout

In Comm

p-1

Read
sockets

Local MPI node threads

MPI_Node

queue[0]

MPI_Node

queue[1]

MPI_Node

queue[n-1]

. . .

Out Comm

p-1

Write
sockets

Out_comm[0]

. . .

. . .

Out_comm[1]

Out_comm[2]

Out_comm[p-1]

. . .

. . .

Each thread writes and reads to
recv_queues in shared memory

 4

4. Initial Performance Evaluation
Following MPI functions are implemented:
MPI_Init, MPI_Comm_rank,
MPI_Comm_size, MPI_Finalize, MPI_Send,
MPI_Isend, MPI_Recv, MPI_Irecv, MPI_Wait,
MPI_Bcast, MPI_Barrier, andMPI_Wtime.

Block based matrix multiplication program is
used for performance evaluation. Matrix size of
1024 x 1024 and 2048 x 2048 were used, and
block sizes of 16, 32, and 64.

Communication between the MPI nodes is
achieved using broadcast mechanism. Program
was compiled using MPICH and PTMPI, and
run on UCSB Gargleblaster Cluster, using 4
processor and 2 processor SMP nodes. Each
two-processor node is Pentium II 400MHz with
512MB or 1GB main memory, and each four-
processor node is Pentium III 500MHz with
1GB main memory.

Figures 3-6 show performance improvement in
terms of execution time between the MPICH
and PTMPI. Significant speedup is achieved in
all cases, but especially on four-processor SMP
nodes. Figures 3 and 5 show that execution
time if the number of MPI nodes is greater than
number of processors, is much better if
multithreaded implementation is used.

Figures 7-10 show scalability of the PTMPI on
the cluster when running block-based matrix
multiplication program. The minimum for the
execution time of test program is reached at
eight two-processor nodes, since the
communication becomes too expensive for
larger configuration. Figures 7-8 shows that
running more MPI nodes per processor is not
expensive in multithreaded implementation,
since the communication cost between the MPI
nodes on the same SMP machine is not large.

0

20

40

60

80

100

120

MPICH PTMPI

1024x16

1024x32
1024x64

2048x16
2048x32

2048x64

Figure 3: Block-based matrix multiplication
execution time in seconds for 16 MPI nodes
running on four two-processor SMP nodes.

0

10

20

30

40

50

60

MPICH PTMPI

1024x16

1024x32
1024x64

2048x16
2048x32

2048x64

Figure 4: Block-based matrix multiplication
execution time in seconds for 8 MPI nodes
running on four two-processor SMP nodes.

 5

0
5

10
15
20
25
30
35
40
45

MPICH PTMPI

1024x16

1024x32
1024x64

2048x16
2048x32

2048x64

Figure 6: Block-based matrix multiplication
execution time in seconds for 16 MPI nodes
running on four four-processor SMP nodes.

0

10

20

30

40

50

60

70

80

MPICH PTMPI

1024x16

1024x32
2048x16

2048x32
2048x64

Figure 5: Block-based matrix multiplication
execution time in seconds for 32 MPI nodes
running on four four-processor SMP nodes.

0

20

40

60

80

100

120

140

1 2 4 8 16

2048x32 1 node/CPU

2048x32 2 nodes/CPU

Figure 7: PTMPI block-based matrix
multiplication execution time in seconds as
function of number of two-processor SMP
nodes.

0

20

40

60

80

100

1 2 4

1024x16

2048x32

Figure 10: PTMPI block-based matrix
multiplication MFLOPS rate per processor
as function of number of four-processor
SMP nodes (one thread per processor).

0

10

20

30

40

50

60

70

80

1 2 4 8 16

1024x16
2048x32

Figure 9: PTMPI block-based matrix
multiplication MFLOPS rate as function of
number of two-processor SMP nodes (one
thread per processor).

0

10

20

30

40

50

60

1 2 4

2048x32 1 node/CPU

2048x32 2 nodes/CPU

Figure 8: PTMPI block-based matrix
multiplication execution time in seconds as
function of number of four-processor SMP
nodes.

 6

5. Future Improvements
The future research will include reevaluation of
the performance, and concentrate on the
performance benefits of spin waiting and
coscheduling between the processes. Cost
distribution will be included in this paper.

Communication between the processes needs to
be improved to enable waiting for receive
request from the MPI node before starting send
of large message. Message size for delayed
sending, and duration of spin waiting need to be
evaluated.

System should be changed to support multiple
communicators and dynamic creation of nodes.
Dynamic changing of number of MPI nodes per
process should be considered.

6. Conclusions
Initial performance analysis shows that
multithreaded approach for the implementation
of MPI functions on the cluster of SMP
machines gives significant speedup.
Performance benefit for multithreaded MPI
execution will be greater with increase of the
number of processors per cluster SMP node.

7. References

[1] Culler, D., Singh, P. J., Gupta, A., “Parallel
Computer Architecture,” Morgan
Kaufmann Publishers, 1997.

[2] Milutinovic, V., “The Best Method for
Presentation of Research Results,” IEEE
TCCA Newsletter, September 1997,
pp. 1-6.

[3] Milutinovic, V., “Microprocessor and
Multimicroprocessor Systems,” Copyright
by Wiley, USA, 2000.

[4] Tang, H., Shen, K., Yang, T.,
“Compile/Run-time Support for Threaded
MPI Execution on Multiprogrammed
Shared Memory Machines,” to appear in
the Proceedings of the 7th ACM SIGPLAN
Symposium on Principles and Practice of
Parallel Programming (PPoPP'99).

[5] Pacheco, P. S., “A User Guide to MPI,”
User Guide, University of San Francisco.

[6] Watson, D., “Gargleblaster Cluster User
Guide,” User Guide.

[7] K. Shen, H. Tang, T. Yang, “Adaptive
Two-level Thread Management for Fast
MPI Execution on Shared Memory
Machines,” to appear in the Proceedings of
ACM/IEEE SC'99.

	Introduction
	Problem Statement
	Proposed Solution
	Initial Performance Evaluation
	
	Future Improvements
	Conclusions
	References

