
Architectural Support for Preemptive RAID Schedulers

Zoran Dimitrijević, Raju Rangaswami, and Edward Chang
University of California, Santa Barbara

{zoran@cs,raju@cs,echang@ece}.ucsb.edu

1. INTRODUCTION
Emerging applications such as video surveillance, large-scale

sensor networks, and virtual reality require high-capacity, high-
bandwidth RAID storage to support high-volume IOs. In addition
to high throughput performance, increasing numbers of applica-
tions require real-time data delivery or short response time.

What is the worst-case access time, and how can it be mitigated?
On an idle disk, the access time is composed of a seek and a ro-
tational delay. When the disk is servicing a non-preemptible IO,
a new IO must wait at least until after the on-going IO has been
completed. In Semi-preemptible IO [1], we investigated the pre-
emptibility of disk IOs. However, whenever the disk scheduler de-
cides to preempt a sequential disk access, the preemption leads to
additional seek overhead. In our current work [2], we investigate a
class of preemptive schedulers for QoS-aware RAID systems.

Simple priority-based scheduling, if not performed carefully, can
incur excessive overhead and thereby degrade the disk through-
put unnecessarily. Figure 1 depicts a large sequential disk access,
which can be serviced either using multiple non-preemptible low-
level disk IOs, or using a single semi-preemptible IO. For example,
the new IO can arrive at either timet1 or t2. Now, a simple priority-
based scheduler will preempt the long sequential write access (and
incur a preemption overhead) regardless of whether the new IO ar-
rives at timet1 or t2. However, preempting the ongoing sequential
IO at t2 may not be profitable, since the ongoing IO is nearly com-
pleted. Such a preemption is likely to be counter-productive—not
gaining much in response time, but incurring preemption overhead.
Our Praid [2] scheme is able to discern whether and when a pre-
emption should take place.

IO2IO1

t

disk d1
T rot

time

1 t2

Figure 1: Sequential disk access.

2. PREEMPTION DECISIONS
In Praid [2], we presentpreemptionmechanisms to allow an on-

going IO to be preempted at optimal points andresumptionmecha-
nisms to resume a preempted IO on the same or a different disk. In
addition to the mechanisms, we propose scheduling policies to de-
cide whether and when to preempt, for maximizing theyield, or the
total value, of the schedule. Since the yield of an IO is application-
and user-defined, our scheduler maps external value propositions to
internal yields, producing a schedule that can maximize total exter-
nal value for all IOs, pending and current.

JIT-preemptionis a method for preempting an ongoing semi-
preemptible IO at the points that minimize the rotational delay at
the destination track (for the higher-priority IO which is serviced
next). Figure 1 depicts these possible JIT-preemption points (which
are roughly one disk rotation apart). IfIO1 is preempted between
these points, the resulting service time forIO2 would be exactly
the same as if the preemption is delayed until the next possible JIT-
preemption point. For example, if the disk services a large write

IO that is already buffered in a non-volatile RAID buffer,preempt-
alwaysstrategy may improve read response time substantially.

JIT-migration is a method for the preemption and migration of
an ongoing semi-preemptible IO in a fashion that minimizes the
service time for the preempted IO. The ongoing IO is preempted
only when the destination disk for the migration is ready to perform
data-transfer for the remaining portion of the IO.

3. PRAID SYSTEM ARCHITECTURE
External IOsare issued by the IO scheduler external to the RAID

system (for example, the operating system’s disk scheduler). These
IOs are tagged with their QoS requirements, so that the RAID
scheduler can optimize their scheduling. We have extended a Linux
kernel to enable such an IO interface [3]. The yield functions are
attached to each QoS class and specify the QoS value added to the
system upon the completion of an external IO.

Internal IOsare IOs which reside in the scheduling queues of
individual disks in a RAID. They are tagged with internally gen-
erated QoS-value functions, and serviced usingSemi-preemptible
IO. When an internal IO is serviced, its completion yields some
QoS value. However, it is hard to estimate this value. First, ex-
ternal QoS value is generated only after the completion of the last
internal IO due for a parent external IO. Second, when performing
write-back operations for buffered write IOs, their external QoS
value has been already harvested. However, not servicing these in-
ternal IOs implies that servicing future write IOs will suffer when
the write buffer gets filled up. Third, internally generated IOs must
be serviced although their completion does not yield any additional
external QoS value.

Whenever a new IO arrives, the scheduler checks whether pre-
empting the ongoing IO, servicing the new IO, and immediately re-
suming the preempted IO, offers a better average yield than the one
obtained without preemption. We further investigate QoS-aware
preemptive schedulers in our technical report [2].

4. CONCLUSION
The specific contributions of our approach are as follows:

• Preemption mechanisms.We introduce two methods to pre-
empt disk IOs in RAID systems—JIT-preemption and JIT-
migration.

• Preemptible RAID policies.We propose scheduling methods
which aim to maximize the total QoS value and use greedy
approaches to decide whether the preemption is beneficial.

• System architecture of the preemptible RAID system.We
present an architecture for QoS-aware RAID systems [2] and
implement a simulator (PraidSim).

5. REFERENCES
[1] Z. Dimitrijevic, R. Rangaswami, and E. Chang. Design and

implementation of Semi-preemptible IO.Proceeding of Usenix FAST,
March 2003.

[2] Z. Dimitrijevic, R. Rangaswami, and E. Chang. Preemptive RAID
scheduling.UCSB Technical Report, March 2004.

[3] Z. Dimitrijevic, R. Rangaswami, M. Sang, K. Ramachandran, and
E. Chang. UCSB-IO: Linux kernel extensions for QoS disk access.
http://www.cs.ucsb.edu/∼zoran/ucsb-io, 2003.


