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Abstract—Allowing higher-priority requests to preempt ongoing disk IOs is of particular benefit to delay-sensitive and real-time

systems. In this paper, we present Semi-preemptible IO, which divides disk IO requests into small temporal units of disk commands to

improve the preemptibility of disk access. We first lay out main design strategies to allow preemption of each component of a disk

access—seek, rotation, and data transfer, namely, seek-splitting, JIT-seek, and chunking. We then present the preemption

mechanisms for single and multidisk systems—JIT-preemption and JIT-migration. The evaluation of our prototype system showed that

Semi-preemptible IO substantially improved the preemptibility of disk access with little loss in disk throughput and that preemptive disk

scheduling could improve the response time for high-priority interactive requests.

Index Terms—Storage, preemptible disk access, preemptive disk scheduling, real-time, QoS, disk IO preemption.
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1 INTRODUCTION

TRADITIONALLY, disk IOs have been thought of as
nonpreemptible operations. Once initiated, they cannot

be stopped until completed. Over the years, disk-storage
designers have learned to live with this restriction.
However, nonpreemptible IOs can be a stumbling block
when designing applications requiring short, interactive
responses. In this paper, our main goal is to investigate disk
IO preemptibility. We propose a framework to make disk
IOs semi-preemptible without changing the existing disks,
thus providing system designers with a finer control over
disk access. The mechanisms presented in this paper can
also be used to enable IO preemption at the disk-firmware
level. The firmware-based implementation would provide
stronger real-time guarantees for higher-priority requests
compared to our software-based prototype.

In addition to high-throughput, short response time is
desirable and even required in certain application do-
mains. One such domain is that of real-time disk
scheduling. Real-time scheduling theoreticians have devel-
oped schedulability tests (the test of whether a task set is
schedulable such that all deadlines are met) in various
settings [1], [2], [3]. In real-time scheduling theory, blocking,
or priority inversion, is defined as the time spent when a
higher-priority task is prevented from running due to the
nonpreemptibility of a low-priority task (in this paper, we
refer to blocking as the waiting time). Blocking is undesir-
able since it degrades the schedulability of real-time tasks.

Making disk IOs preemptible would reduce blocking and
improve the schedulability of real-time disk IOs.

Real-world applications of preemptive IO scheduling

include guaranteeing response time for interactive virtual

reality, audio and video streaming, Web services running

on shared storage, and complex multilevel database

systems. For instance, storage systems often schedule

background operations [4] like logging, defragmentation,

indexing, or low-priority data mining. To handle cache

misses due to foreground tasks, it is critical to preempt

long-running noninteractive IOs to promptly service inter-

active IO requests. The latency tolerance for interactive

operations in large Web databases is around 100 to

200 milliseconds (reponses to the user queries for all major

Internet search engines are of this order). As another

example, in an immersive virtual world, the latency

tolerance between a head movement and the rendering of

the next scene (which may involve a disk IO to retrieve

relevant data) is around 15 milliseconds [5]. IO preemption

enables delivery of the response time guarantees required

by these applications.
In summary, the contributions of this paper are as

follows:

. Semi-preemptible IO. We propose methods to abstract
both read and write IO requests and make them
preemptible [6]. This enables storage systems to
reduce the response time for higher-priority requests.

. Preemption mechanisms. We explain two methods to
preempt disk IOs in single and multidisk systems—
JIT-preemption and JIT-migration. The preemption
methods for RAID rely on our preemptible RAID
architecture [7].

. Prototype implementation. We present a feasible path
to implement Semi-preemptible IO. The implemen-
tation was possible through the use of a low-level
disk profiler [8].
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The rest of this paper is organized as follows: Section 2
introduces Semi-preemptible IO and describes its three core
components. Section 3 introduces JIT-preemption and
JIT-migration methods that facilitate effective disk
IO preemption. In Section 4, we evaluate Semi-preemptible
IO and our preemption mechanisms. Section 5 presents
related research. In Section 6, we make concluding remarks
and suggest directions for future work.

2 SEMI-PREEMPTIBLE IO

Before introducing the concept of Semi-preemptible IO [6],
we first define some terms which we use throughout the
rest of this paper:

. A logical disk block is the smallest unit of data that can
be accessed on a disk drive (typically, 512 B). Each
logical block resides at a physical disk location
depicted by a physical address 3-tuple (cylinder,
track, sector).

. A disk command is a nonpreemptible request issued
to the disk over the IO bus (for example, the read,
write, seek, and interrogative commands).

. A disk IO request is a request for read or write access
to a sequential set of logical disk blocks (in this
paper, we use the terms “disk IO request,” “disk
IO,” and “IO” interchangeably).

. Thewaiting time is the timebetween thearrival of an IO
request and the moment the disk starts servicing it.

. The service time is the sum of seek time, rotational
delay, and data-transfer time for an IO request.

. The response time is then the sum of the waiting time
and the service time.

In order to understand the magnitude of the waiting
time, let us consider a typical read IO request, depicted in
Fig. 1. The disk first performs a seek to the destination
cylinder requiring Tseek time. Then, the disk must wait for a
rotational delay, denoted by Trot, so that the target disk
block comes under the disk arm. The final stage is the data
transfer stage, requiring Ttransfer time, when the data is read
from the disk media to the disk buffer. This data is
simultaneously transferred over the IO bus to the system
memory. (The IO bus data-transfer rate is typically greater
than the internal disk transfer rate.)

Overview. For a typical commodity system, once a disk
command is issued on the IO bus, it cannot be stopped.
Traditionally, a disk IO is serviced using a single disk
command. Consequently, the operating system must wait
until the ongoing IO is completed before it can service the
next IO request on the same disk. The system can issue
multiple queued disk commands, but the disk firmware
will only try to schedule them in a more efficient order.
Once the disk starts the sequential data-transfer required to
complete a disk command, it usually does not preempt the
operation in order to favor another disk command in the
command queue.

Semi-preemptible IO maps each IO request into multiple
fast-executing disk commands using three methods. Each
method addresses the reduction of one of the three
components of the waiting time—the ongoing IO’s rotational
delay (Trot), seek time (Tseek), and transfer time (Ttransfer). In

this paper, we present a software approach where we do not

change the disk firmware to enable preemptions. It is also

possible to provide a higher level of preemptibility and

stronger real-time guarantees by changing the disk firmware.

We briefly discuss the differences between software and

firmware-based approaches in Sections 2.1, 2.2, and 2.3.

. Chunking Ttransfer. A large IO transfer is divided into
a number of small chunk transfers and preemption is
made possible between the small transfers. If the IO
is not preempted between the chunk transfers,
chunking does not incur any overhead. This is due
to the prefetching mechanism in current disk drives
(Section 2.1).

. Preempting Trot. By performing just-in-time (JIT) seek
for servicing an IO request, the rotational delay at
the destination track is virtually eliminated. The
preseek slack time thus obtained is preemptible. This
slack can also be used to perform prefetching for the
ongoing IO request or/and to perform seek splitting
(Section 2.2).

. Splitting Tseek. Semi-preemptible IO can split a long
seek into subseeks, and allows a preemption
between two subseeks (Section 2.3).

In order to implement these methods, Semi-preemptible

IO relies on accurate disk profiling, presented in Section 2.4.
Waiting Time. We use waiting time to quantify the

preemptibility of disk access, a lower value indicating a

more preemptible system. Let us assume that a higher

priority request may arrive at any time during the execution

of an ongoing IO request with equal probability. The

waiting time for the higher priority request varies between

zero and the duration of the on-going IO. The expected

waiting time of a higher priority IO request can then be

expressed in terms of seek time, rotational delay, and data

transfer time required for on-going IO request as

EðTwaitingÞ ¼
1

2
ðTseek þ Trot þ TtransferÞ: ð1Þ

Let ðV1::VnÞ be a sequence of n fine-grained disk

commands we use to service an IO request. Let the time

required to execute disk-command Vi be Ti. Let Tidle be

the total time during the servicing of the IO request when

the disk was idle (i.e., no disk command is issued before

JIT-seek). Using the above assumption that the higher

priority request can arrive at any time with equal

probability, the probability that it will arrive during the

execution of the ith command Vi can be expressed as

pi ¼
TiPi¼n

i¼1 Ti þ Tidle

:
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Fig. 1. Timing diagram for a disk read request.



Consequently, the expected waiting time of a higher
priority request in Semi-preemptible IO can be expressed as

EðT 0
waitingÞ ¼

1

2

Xi¼n

i¼1

ðpiTiÞ ¼
1

2

Pi¼n
i¼1 T

2
i

ð
Pi¼n

i¼1 Ti þ TidleÞ
: ð2Þ

The following example illustrates how Semi-preemptible
IO can reduce the waiting time for higher-priority IOs (and,
hence, improve the preemptibility of disk access).

Illustrative Example. Suppose a 500 kB read-request1 has
to seek 20,000 cylinders requiringTseek of 14ms,mustwait for
aTrot of 7ms, and requiresTtransfer of 25ms at a transfer rate of
20MBps. The expectedwaiting time,EðTwaitingÞ, for a higher-
priority request arriving during the execution of this request,
is 23 ms, while the maximum waiting time is 46 ms. Semi-
preemptible IO can reduce the waiting time by performing
the following operations: It first predicts both the seek time
and rotational delay using methods presented in Section 2.4.
Since the predicted seek time is long (Tseek ¼ 14 ms), it
decides to split the seek operation into two subseeks, each
of 10,000 cylinders, requiring T 0

seek ¼ 9 ms each. This seek
splitting does not cause extra overhead in this case because
the Trot ¼ 7 can mask the 4 ms increased total seek time
(2� T 0

seek � Tseek ¼ 2� 9� 14 ¼ 4). The rotational delay is
now T 0

rot ¼ Trot � ð2� T 0
seek � Tseek ¼ 3 ms.

With this knowledge, the disk driver waits for 3 ms
before performing a JIT-seek. This JIT-seek method makes
T 0
rot preemptible since no disk operation is being performed.

The disk then performs the two subseek disk commands
and then 25 successive read commands, each of size 20 kB,
requiring 1 ms each. A higher priority IO request could be
serviced immediately after each disk-command. Semi-
preemptible IO thus enables preemption of an originally
nonpreemptible read IO request. Now, during the service of
this IO, we have two scenarios:

. No higher-priority IO arrives. In this case, the disk does
not incur additional overhead for transferring data
due to disk prefetching (discussed in Section 2.1). (If
Trot cannot mask seek-splitting, the system can
choose not to perform seek-splitting.)

. A higher-priority IO arrives. In this case, the maximum
waiting time for the higher-priority request is now
9 ms in case it arrives during one of the two seek
disk commands. However, if the on-going request is
at the stage of transferring data, the longest stall for
the higher priority request is just 1 ms. The expected
value for waiting time is only 1

2
2�92þ25�12

2�9þ25�1þ3 ¼ 2:03 ms,
a significant reduction from 23 ms.

This example shows that Semi-preemptible IO substan-
tially reduces the expected waiting time and, hence,
increases the preemptibility of disk access. However, if an
IO request is preempted to service a higher priority request,
an extra seek operation may be required to resume service
for the preempted IO. The distinction between IO preempt-
ibility and IO preemption is an important one. Preemptibility
enables preemption and incurs little overhead itself.
Preemption always incurs overhead, but it reduces the

service time for higher-priority requests. Preemptibility
provides the system with the choice of trading throughput
for short response time when such a trade-off is desirable.
We present one such preemptive scheduling approach in
our related work [7].

2.1 Chunking: Preempting Ttransfer

The data transfer component (Ttransfer) in disk IOs can be
large. For example, the current maximum disk IO size used
by Linux and FreeBSD is 128 kB and it can be larger for
some specialized video-on-demand systems.2 Furthermore,
operating systems typically do not preempt a sequence of
disk IOs accessing a larger set of consecutive disk blocks
[12]. To make the Ttransfer component preemptible, Semi-
preemptible IO uses chunking.

Definition 2.1. Chunking is a method for splitting the data
transfer component of an IO request into multiple smaller
chunk transfers. The chunk transfers are serviced using
separate disk commands, issued sequentially.

Benefits. Chunking reduces the transfer component of
Twaiting. A higher-priority request can be serviced after a
chunk transfer is completed instead of after the entire IO is
completed. For example, suppose a 500 kB IO request
requires a Ttransfer of 25 ms at a transfer rate of 20 MBps.
Using a chunk size of 20 kB, the expected waiting time for a
higher priority request is reduced from 12.5 ms to 0.5 ms.

Overhead. For small chunk sizes, the IO bus can become
a performance bottleneck due to the overhead of issuing a
large number of disk commands. As a result, the disk
throughput degrades. In the disk firmware-based imple-
mentation, the chunk size can be as small as one sector since
there is no IO bus activity.

2.1.1 The Method

To perform chunking, the system must decide on the chunk
size. Based on the profiling, Semi-preemptible IO chooses
the minimum chunk size for which the sequential disk
throughput is optimal without excessive IO bus activity
(Section 2.4). The chunking relies on the existence of a read
cache and a write buffer on the disk.

We now present the chunking for read and write IO
requests separately.

The Read Case. Disk drives are optimized for sequential
access and they continue prefetching data into the disk
cache even after a read operation is completed [13].
Chunking for a read IO requests is illustrated in Fig. 2.
The x-axis shows time and the two horizontal time lines
depict the activity on the IO bus and the disk head,
respectively. Employing chunking, a large Ttransfer is
divided into smaller chunk transfers issued in succession.
The first read command issued on the IO bus is for the first
chunk. Due to the prefetching mechanism, all chunk
transfers following the first one are serviced from the disk
cache rather than the disk media. Thus, the data transfers
on the IO bus (the small dark bars shown on the IO bus line
in the figure) and the data transfer into the disk cache (the
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1. Examples of schedulers that issue nonpreemptible access of the order
of 500 kB and more are schedulers presented in Schindler et al. [9] work on
track-aligned extents, Google File System [10], and Xtream [11].

2. These values are likely to vary in the future. Semi-preemptible IO
provides a technique that does not deter disk preemptibility with the
increased IO sizes.



dark shaded bar on the disk-head line in the figure) occur
concurrently. The disk head continuously transfers data

after the first read command, thereby fully utilizing the

internal disk throughput.
Fig. 3 illustrates the effect of the chunk size on the disk

throughput using a mock disk. The optimal chunk size lies

between a and b. A smaller chunk size reduces the waiting
time for a higher-priority request. Hence, Semi-preemptible

IO uses a chunk size close to but larger than a. For chunk

sizes smaller than a, due to the overhead associated with

issuing a disk command, the IO bus is a bottleneck. Point b

in Fig. 3 denotes the point beyond which the performance of
the cache may be suboptimal due to the implementation of

disk prefetching algorithms.
The Write Case. Semi-preemptible IO performs chunk-

ing for write IOs similarly to chunking for read requests.

However, the implications of chunking in the write case are

different. When a write IO is performed, the disk command
can complete as soon as all the data is transferred to the disk

write buffer. As soon as the write command is completed,

the operating system can issue a disk command to service a

higher-priority IO. However, the disk may choose to

schedule a write-back operation for disk write buffers
before servicing a new disk command. We refer to this

delay as the external waiting time. Since the disk can buffer

multiple write requests, the write-back operation can

include multiple disk seeks. Consequently, the waiting

time for a higher priority request can be substantially
increased when the disk services write IOs.

In order to increase the preemptibility of write requests,

we must take into account this external waiting time.

External waiting can be reduced to zero by disabling write

buffering. However, in the absence of write buffering,

chunking would severely degrade disk performance. The
disk would suffer from an overhead of one disk rotation

after performing an IO for each chunk. To remedy external

waiting, our prototype forces the disk to write only the last

chunk of the write IO to disk media by setting the force-

unit-access flag in the SCSI write command. Using this
simple technique, the write-back operation to the disk

medium is triggered at the end of each write IO.

Consequently, the external waiting time is reduced since

the write-back operation does not include multiple disk

seeks (we present more details in our related work [6]).

2.2 JIT-Seek: Preempting Trot

After the reduction of the Ttransfer component of the waiting

time, the rotational delay and seek time components
become significant even for large IOs. The rotational period

(TP ) can be as much as 10 ms in current-day disk drives. To

reduce the rotational delay component (Trot) of the waiting

time, we propose a just-in-time seek (JIT-seek) technique for
IO operations.

Definition 2.2. The JIT-seek technique delays the servicing of
the next IO request in such a way that the rotational delay to
be incurred is minimized. We refer to the delay between two
IO requests, due to JIT-seek, as slack time.

Benefits.

1. The slack time between two IO requests is
fully preemptible. For example, suppose that an
IO request must incur a Trot of 5 ms and JIT-seek
delays the issuing of the disk command by 4 ms. The
disk is thus idle for Tidle ¼ 4 ms. Then, the expected
waiting time is reduced from 2.5 ms to 1

2
1�1
1þ4 ¼ 0:1ms.

2. The slack obtained due to JIT-seek can also be used
to perform data prefetching for the previous IO or to
service a background request [14] and, hence,
potentially increase the disk throughput.

Overhead. Semi-preemptible IO predicts the rotational
delay and seek time between two IO operations in order to
perform JIT-seek. If there is an error in prediction, then the
penalty for JIT-seek is at most one extra disk rotation and
some wasted cache space for unused prefetched data. In the
firmware-based implementation, disks can predict JIT-seek
more accurately because they control internal disk activity
and have knowledge about the current head position (the
similar access-time prediction is already implemented in
certain disk firmwares in order to reduce noise [15]).

2.2.1 The Method

The JIT-seek method is illustrated in Fig. 4. The x-axis
depicts time and the two horizontal lines depict a regular IO
and an IO with JIT-seek, respectively. With JIT-seek, the
read command for an IO operation is delayed and issued
just-in-time so that the seek operation takes the disk head
directly to the destination block, without incurring any
rotational delay at the destination track. Hence, data
transfer immediately follows the seek operation. The
available rotational slack, before issuing the JIT-seek
command, is now preemptible. We can make two key
observations about the JIT-seek method. First, an accurate
JIT-seek operation reduces the Trot component of the
waiting time without any loss in performance. Second,
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Fig. 2. Preemptibility of the data transfer.

Fig. 3. Effect of chunk size on disk sequential throughput.



and perhaps more significantly, the ongoing IO request can
be serviced as much as possible, or even completely, if
sufficient slack is available before the JIT-seek operation for
a higher priority request.

The preseek slack made available due to the JIT-seek
operation can be used in three possible ways:

. The preseek slack can be simply left unused. In this
case, a higher-priority request arriving during the
slack time can be serviced immediately.

. The slack can be used to perform additional data
transfers. Operating systems can perform data pre-
fetching for the current IO beyond the necessary data
transfer.We refer to it as free prefetching [14]. Chunking
is used for the prefetched data to reduce the waiting
time of a higher priority request. Free prefetching can
increase the disk throughput. We must point out,
however, that free prefetching is useful only for
sequential data streams where the prefetched data
will be consumed within a short time. Operating
systems can also perform another background re-
quest, as proposed elsewhere [14], [16].

. The slack can be used to mask the overhead incurred
in performing seek-splitting, which we discuss next.

2.3 Seek Splitting: Preempting Tseek

The seek delay (Tseek) becomes the dominant component
when the Ttransfer and Trot components are reduced. A full
stroke of the disk arm may require as much as 15 to 20 ms in
current-day disk drives. It may then be necessary to reduce
the Tseek component to further reduce the waiting time.

Definition 2.3. Seek-splitting breaks a long, nonpreemptible
seek of the disk arm into multiple smaller subseeks.

Benefits. The seek-splitting method reduces the Tseek

component of the waiting time. A long nonpreemptible seek
can be transformed into multiple shorter subseeks. A higher
priority request can now be serviced at the end of a subseek,
instead of being delayed until the entire seek operation is
completed. For example, suppose an IO request involves a
seek of 20,000 cylinders, requiring a Tseek of 14 ms. Using
seek-splitting, this seek operation can be divided into two
9 ms subseeks of 10,000 cylinders each. Then, the expected
waiting time for a higher priority request is reduced from
7 ms to 4.5 ms.

Overhead.

1. Due to the mechanics of the disk arm, the total time
required to perform multiple subseeks is greater
than that of a single seek for a given seek distance.
As a consequence, the seek-splitting method can
degrade disk throughput. On the other hand, if we

perform seek-splitting only when the available
rotational slack (from JIT-seek) masks seek-splitting,
then we avoid throughput degradation but incur
slight degradation in expected waiting time (since
the preseek slack is fully preemptible but the
subseeks are not). The main benefit of seek-splitting
is reducing the maximum value for waiting time. In
case we implement Semi-preemptible IO in the disk
firmware, the on-going long seek can be preempted
at any time and the seek-splitting method is not
necessary (instead, we can perform the actual seek
preemption).

2. Splitting the seek intomultiple subseeks increases the
number of disk head accelerations and decelerations,
consequently increasing the power usage and noise.

2.3.1 The Method

To split seek operations, Semi-preemptible IO uses a
tunable parameter, the maximum subseek distance. The
maximum subseek distance decides whether to split a seek
operation. For seek distances smaller than the maximum
subseek distance, seek-splitting is not employed. A
smaller value for the maximum subseek distance provides
higher responsiveness at the cost of possible throughput
degradation.

Unlike the previous two methods, seek-splitting may
degrade disk performance. However, we note that the
overhead due to seek-splitting can, in some cases, bemasked.
If thepreseek slackobtaineddue to JIT-seek is greater than the
seek overhead, then the slack can be used to mask this
overhead. A specific example of this phenomenon was
presented in Illustrative Example. If the slack is insufficient
to mask the overhead, seek-splitting can be aborted to avoid
throughput degradation. Making such a trade-off, of course,
depends on the requirements of the application.

2.4 Disk Profiling

As mentioned in the beginning of this section, Semi-
preemptible IO greatly relies on disk profiling to obtain
accurate disk parameters. The extraction of these disk
parameters is described in the Diskbench technical report
[8]. Semi-preemptible IO requires the following disk
parameters:

. The optimal chunk size. In order to efficiently perform
chunking, Semi-preemptible IO chooses the chunk
size from the optimal range extracted using the disk
profiler.

. Seek time prediction. In order to perform JIT-seek and
seek-splitting, Semi-preemptible IO relies on the
profiler-extracted seek curve.

. Rotational delay prediction. In order to implement JIT-
seek, Semi-preemptible IO uses disk block mappings,
rotational factors, and seek curve to accurately predict
the rotational delay between two disk accesses [8].

Fig. 5 depicts the effect of chunk size on the read
throughput performance for the SCSI disk used in our
prototype system. The optimal range for chunk size (between
the points a and b illustrated previously in Fig. 3) can be
automatically extracted from these figures (in this case,
between 8 and 250 kB). The disk profiler implementationwas
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Fig. 4. JIT-seek.



successful in extracting the optimal chunk size for several

SCSI and IDE disk drives [8].
In Fig. 6, we present the error distribution of rotational

delay prediction for a large number of random request-pairs

for two SCSI disks (ST318437LW is used in our prototype).

Our prediction is accurate within 80 �s for 99 percent of the

requests. In order to predict disk access time, our prototype

must also predict the seek time. Fig. 7 depicts the seek curve

for ST318437LW. The accuracy of the access-time prediction

is bounded by the prediction accuracy of seek time, which is

an error-bound of one millisecond.
Commodity disks support issuing multiple disk requests

in an asynchronous fashion that can be rescheduled

internally (known as disk queuing). Disks can also issue

additional internal commands to handle bad-blocks or issue

write-back operations. In order to control this external (for

the Semi-preemptible IO) waiting time, we restrict disk

queues to one request in our prototype. Since Semi-

preemptible IO relies on the detailed disk profile, it can

perform near-optimal scheduling itself. (To increase the

reliability of JIT-seek, one possible improvement is queuing

the last chunk with the next disk operation.)

3 PREEMPTION MECHANISMS

In this section, we introduce methods for IO preemption

and resumption for single-disk and multiple-disk (RAID)

systems.3 We propose three mechanisms for IO preemption:

1) JIT-preemption with IO resumption at the same disk,

2) JIT-preemption with migration of the on-going IO to a

different disk (favoring the newly arrived IO), and 3) pre-

emption with JIT-migration of the on-going IO (favoring the

on-going IO).

3.1 JIT-Preemption

When the local-disk scheduler (controlling the access to a

single disk in a RAID system) decides that preempting and

delaying an on-going IO would yield a better overall

schedule, the IO should be preempted using JIT-preemption.

This is a local decision, meaning that a request for the

remaining portion of the preempted IO is placed back in the

local-disk queue and resumed later on the same disk (or
dropped completely4).

Definition 3.1. JIT-preemption is the method for preempting
an on-going Semi-preemptible IO at the points that minimize
the rotational delay at the destination track (for a higher
priority IO). The scheduler decides when to preempt the on-
going IO using the knowledge about the available JIT-
preemption points Pi. These points are roughly one disk
rotation apart.

Preemption: The method relies on JIT-seek (described in
Section 2.2), which requires rotational delay prediction (also
required by other disk schedulers [14], [17]). JIT-preemption
is similar to free-prefetching introduced in [14]. However, if
the preempted IO requires later completion, then the JIT-
preemption yields useful data transfer (prefetching may or
may not be useful). Another difference is that JIT-preemp-
tion can also be used for write IOs, although its implemen-
tation outside of disk firmware is more difficult for write
IOs than it is for the read IOs [6].

Fig. 8 depicts the positions of possible JIT-preemption
points Pi. If IO1 is preempted anywhere between two
adjacent such points, the resulting service time for IO2

would be exactly the same as if the preemption is delayed
until the nextJIT-preemption point. This is because only the
rotational delay at the destination track varies, depending
on when the seek operation starts. The rotational delay is
expected to be minimum at the JIT-preemption points,
which are roughly one disk rotation apart.

Fig. 9 depicts the case when the ongoing IO1 is
preempted during its data transfer phase in order to service
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Fig. 5. Sequential read throughput versus chunk size (Seagate

ST318437LW).

Fig. 6. Rotational delay prediction accuracy for ST39102LW and

ST318437LW.

Fig. 7. Seek curve for ST318437LW.

3. In this paper, we use the term RAID for any multidisk system
implementing reliable storage as a redundant array of commodity,
inexpensive disks. We do not rely on hardware-only or static-placement
RAID implementations.

4. For example, the scheduler may drop unsuccessful speculative reads,
cache-prefetch operations, or preempted IOs whose deadlines have expired.



IO2. In this case, the first available JIT-preemption point is
chosen. The white regions represent the access-time over-
head (seek time and rotational delay for an IO). Since JIT-
seek minimizes rotational delay for IO2, its access-time
overhead is reduced compared to the no-preemption case
depicted in Fig. 8. The preemption overhead when IO1 is
rescheduled immediately is likely to be longer than the JIT-
seek duration because it also involves a rotational delay.

Resumption. The preempted IO is resumed later at the
same disk. The preemption overhead (depicted in Fig. 9) is
the additional seek time and rotational delay required to
resume the preempted IO1. Depending on the scheduling
decision, IO1 may be resumed immediately after IO2

completes, at some later time, or never (it is dropped and
does not complete).

3.2 JIT-Preemption with Migration

In terms of preemption, the main difference between single-
disk and RAID systems is the RAID’s ability to service
multiple higher priority IOs at the same time (one at each
disk). Another important difference is the ability to change
the destination disk (migrate) or to postpone preempted
write IOs without sacrificing reliability.

RAID systems duplicate data for deliberate redundancy.
If an ongoing IO can also be serviced from some other disk
which holds a copy of the data, then the scheduler has the
option to preempt the IO and migrate its remaining portion
to the other disk. In the traditional static RAIDs, this
situation can happen in RAID levels 1 (mirrored) and 0/1
(striped+mirrored) [18]. It might also happen in reconfigur-
able RAID systems (for example, HP AutoRAID [19]), in
object-based RAID storage [20], or in nontraditional large-
scale software RAIDs [10].

Definition 3.2. JIT-preemption-with-migration is the method
for preempting and migrating an ongoing IO to a different disk
to minimize the service time for the newly arrived IO.

Preemption. For preemption, this method relies on the
previously described JIT-preemption. Fig. 10 depicts the
case when it is possible to use JIT-preemption to promptly
service IO2 while migrating IO1 to another disk. Preemp-
tion overhead is in the form of additional access time
required for the completion of IO1 at the replica disk.

Resumption. The preempted IO is resumed later at the
disk to which it was migrated. The preempted IO enters the
scheduling queue of the mirror disk and is serviced
according to the single-disk scheduling policy. The pre-
emption overhead exists only at the mirror disk. This

suggests that this method may be able to improve the
schedule when load balance is hard to achieve.

3.3 JIT-Migration

When a scheduler decides to migrate the preempted IO to
another diskwith a copy of the data, it can choose to favor the
newly arrived IO or the ongoing IO. The former uses JIT-
preemption introduced earlier. The latter uses JIT-migration.

Definition 3.3. JIT-migration is the method for preempting and

migrating an on-going IO in a fashion that minimizes the

service time for the on-going IO. The on-going IO is preempted

at the moment when the destination disk starts performing

data-transfer for the remaining portion of the IO. The original

IO is then preempted, but its completion time is not delayed.

Preemption. JIT-migration also relies on JIT-seek and is
used to preempt and migrate the on-going IO only if it does
not increase its service time, thereby favoring theon-going IO.

Fig. 11 depicts the casewhen the on-going IO (IO1) ismore
important than the newly arrived IO (IO2). When the disk
with IO1 replica is idle or servicing less important IOs,we can
still reduce the service time for IO2.As soonas IO2 arrives, the
scheduler can issue a speculative migration to another disk
with a copy of the data. When the data transfer is ready to
begin at the other disk, the scheduler can migrate the
remaining portion of IO1 at the desired moment. Since the
disks are not necessarily rotating in unison, the IO1 can be
serviced only at approximately the same time when com-
pared to the no-preemption case. The preemption delay for
IO1 depends on the queue at the disk with the replica. If the
diskwith the replica is idle, the delaywill be of the order of 10
ms (equivalent to the access-time overhead). JIT-migration is
beneficial only when the mirror disk is not the same for
all disk IOs and the RAID scheduler cannot schedule the
low-priority IO2 on the same disks as the high-priority IO1

(for example, this is possible in object-based RAID storage
[20] or in software RAIDs [10]).

Resumption. In the case of JIT-migration, IO1 is not
preempted until the disk with another replica is ready to
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Fig. 8. Possible JIT-preemption points.

Fig. 9. JIT-preemption during data transfer.

Fig. 10. JIT-preemption with migration.

Fig. 11. Preemption with JIT-migration.



continue its data transfer. Again, the preemption overhead
exists only at the mirror disk.

4 EXPERIMENTAL EVALUATION

We now present the experimental evaluation of IO
preemption methods based on the prototype implementa-
tion of Semi-preemptible IO and the simulator for pre-
emptible RAID systems. Our experiments aimed to answer
the following two questions:

. What is the level of preemptibility of Semi-preemp-
tible IO and how does it influence the disk
throughput?

. What is the effect of IO preemption on the average
response time and the disk throughput for both
single and multidisk systems?

4.1 Preemptibility

In order to answer the first question, we have implemented
a prototype system [6] which can service IO requests using
either the traditional nonpreemptible method (nonpreemp-
tible IO) or Semi-preemptible IO.

4.1.1 Experimental Setup

Our prototype runs as a user-level process in Linux and talks
directly to a SCSI disk using the Linux SCSI-generic interface.
The prototype uses the logical-to-physical block mapping of
the disk, the seek curve, and the rotational skew times, all of
which are automatically generated by the Diskbench profiler
[8]. All experiments were performed on a Pentium III 800
MHz machine with a Seagate ST318437LW SCSI disk. This
SCSI disk had two tracks per cylinder, with 437 to 750 blocks
per track, depending on the disk zone. The total disk capacity
was 18.4 GB. The rotational speed of the disk was 7,200 RPM.
The maximum sequential disk throughput was between 24.3
and 41.7 MB/s.

For performance benchmarking, we performed two sets
of experiments. First, we tested the preemptibility of the
system using synthetic IO workload. For the synthetic
workload, we used equal-sized IO requests within each
experiment. The low-priority IOs were for data located at
random positions on the disk. In the experiments where we
actually performed preemption, the higher priority IO
requests were also at random positions. However, their
size was set to only one block in order to provide only the
estimate for preemption overhead. We tested the preempt-
ibility under the first-come-first-serve (FCFS) and elevator disk
scheduling policies. In the second set of experiments, we
used traces obtained using an instrumented Linux kernel
disk-driver.

Nonpreemptible IOs were serviced using chunk sizes of
at most 128 kB (smaller IOs were serviced as a single,
smaller nonpreemptible IO). This is currently the maximum
size used by Linux and FreeBSD for breaking up large IOs.
We assumed that a large nonpreemptible IO cannot be
preempted between chunks since this is the case for current
nonpreemptive disk schedulers. Based on disk profiling,
our prototype used the following parameters for Semi-
preemptible IO: Chunking divided the data transfer into
chunks of at most 50 disk blocks each (25 kB). JIT-seek used

an offset of 1 ms to reduce the probability of prediction
errors. Seeks for more than half of the disk size in cylinders
were split into two equal-sized, smaller seeks. We used the
SCSI seek command to perform subseeks.

The experiments for preemptibility of disk access
measured the duration of (nonpreemptible) disk commands
in the absence of higher-priority IO requests. The results
include both detailed distribution of disk commands
durations (and, hence, maximum possible waiting time)
and the expected waiting time calculated using the
measured durations of disk commands and (2), as ex-
plained in Section 2.

4.1.2 Synthetic Workload

Fig. 12 depicts the difference in the expected waiting time
between nonpreemptible IO and Semi-preemptible IO
(calculated using themeasured durations of nonpreemptible
disk commands). In this experiment, IOswere serviced using
elevator-based policy for data located at randompositions on
the disk. We can see that the expected waiting time for
nonpreemptible IOs increases linearly with IO size due to
increased data transfer time. The expected waiting time for
Semi-preemptible IO actually decreaseswith IO size since the
disk spends more time performing more-preemptible data
transfer for larger IOs. For small IOs (less than 50 kB), the
data-transfer component becomes even less significant and
the preemptibility is similar to the 50 kB case.

Fig. 13 shows the effect of Semi-preemptible IO on the
achieved disk throughput. The reduction of throughput for
Semi-preemptible IO was due to the overhead of seek-
splitting and misprediction of seek and rotational delay.
Results for FCFS scheduling were published in [6].

Fig. 14 shows the individual contributions of the three
strategies with respect to expected waiting time for the
synthetic workload with the elevator scheduling policy.
Fig. 15 summarizes the individual contributions of the three
strategies with respect to the achieved disk throughput.
Seek-splitting slightly degraded the disk throughput since,
whenever a long seek was split, the disk required more time
to perform multiple subseeks. Also, JIT-seek introduced
overhead in the case of misprediction.

Since disk commands are nonpreemptible (even in Semi-
preemptible IO), we can measure the duration of disk
commands and then calculate the expected waiting time. A
smaller value of waiting time implies a more preemptible
system. Fig. 16 shows the distribution of the durations of
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Fig. 12. Improvements in the expected waiting time (Elevator).



disk commands for both nonpreemptible IO and Semi-

preemptible IO (for exactly the same sequence of IO

requests). In the case of nonpreemptible IO (Fig. 16a), the

disk access can be preempted only when the current

sequential IO is completed. The obtained distribution was

dense near the sum of the average seek time, rotational

delay, and transfer time required to service the entire IO

request. The distribution was wider when the IO requests

were larger because the duration of data transfer depended

not only on the size of the IO request, but also on the

throughput of the disk zone where the data resided.
In the case of Semi-preemptible IO, the distribution of

the durations of disk commands did not directly depend on

the IO request size, but on the sizes of individual disk
commands used to service the IO request. (We plot the
distribution for the Semi-preemptible IO case in logarithmic
scale so that the probability density of longer disk
commands can be better visualized.) In Fig. 16b, we see
that, for Semi-preemptible IO, the largest probability
density was around the time required to transfer a single
chunk of data. If the chunk included the track or cylinder
skew, the duration of the command was slightly longer.
(The two peaks immediately to the right of the highest peak,

at approximately 2 ms, have the same probability because
the disk used in our experiments had two tracks per
cylinder.) The part of the distribution between 3 ms and 16
ms in the figure is due to the combined effect of JIT-seek
and seek-splitting on the seek and rotational delays. The
probability for this range was small, approximately 0:168,
0:056, and 0:017 for 50 kB, 500 kB, and 2 MB IO requests,
respectively.

4.1.3 Trace Workload

IO traces were obtained from three applications. The first
trace (DV15) was obtained when the Xtream multimedia
system [11] was servicing 15 simultaneous video clients
using the FCFS disk scheduler. The second trace

(Elevator15) was obtained using a similar setup where
Xtream used the native Linux elevator scheduler to handle
concurrent disk IOs. The third was a disk trace of the TPC-C
database benchmark with 20 warehouses obtained from
[21]. Trace summary is presented in Table 1.
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Fig. 13. Effect on achieved disk throughput (Elevator).

Fig. 14. Individual contributions of Semi-preemptible IO components on

the expected waiting time (Elevator).

Fig. 15. Individual effects of Semi-preemptible IO strategies on disk

throughput (Elevator).

Fig. 16. Distribution of the disk command duration (FCFS). Smaller

values of waiting time imply a higher preemptibility. (a) Nonpreemptible

IO (linear scale). (b) Semi-preemptible IO (logarithmic scale).



Figs. 17 and 18 show the expected waiting time and disk

throughput for the trace experiments. In the case of Semi-

preemptible IO, the expected waiting time was smaller by as

much as 65 percent (Fig. 17)with less than 5.4 percent (Fig. 18,

maximum 5.33 percent for DV15 traces) loss in disk

throughput for all traces. Elevator15 had smaller throughput

than DV15 because several processes were accessing the disk

concurrently, which increased the total number of seeks.

4.2 Preemption

In order to answer the second question, we compared

preemptive and nonpreemptive approaches using the

preemptible RAID simulator PraidSim [7] as well as the

Semi-preemptible IO prototype implementation explained

previously.

4.2.1 Experimental Setup

We used PraidSim to evaluate preemptive RAID scheduling

algorithms. PraidSim was implemented in C++ and used

Disksim [22] to simulate disk accesses. We did not use the

Disksim RAID support, but rather implemented our own

simulator for QoS-aware RAID systems (based on the

architecture presented in [7]). PraidSim can either generate a

syntheticworkload for external IOs or perform a trace-driven

simulation. We have chosen to simulate only the chunking
and JIT-seek methods from Semi-preemptible IO.

To estimate the response time for higher priority IO
requests and the preemption overhead, we conducted
experiments wherein higher priority requests were inserted
into the IO queue at arrival rate � with normal distribution.

Write-IntensiveReal-TimeApplications.Wegenerated a
workloadsimilar to thatof avideo surveillance system,which
services read and write streams with real-time deadlines. In
addition to IOs for real-time streams, we also generated
interactive read IOs.Wepresent results for a typicalRAID0/1
(4+4disks) configurationwitha real-timewrite rateof 50MB/
s (internally, 100MB/s) and a real-time read rate of 10MB/s.
Interactive IO arrival rate was 10 req/s. The external non-
interactive IOs were 2 MB each and interactive IOs were 1
MB each. The workload corresponded to a video
surveillance system with 50 dvd-quality write video
streams, 20 read streams, and 10 interactive operations
performed each second.

Fig. 19 depicts the improvements in the response time
for interactive IOs and the overhead in terms of reduced
idle-time. The system was able to satisfy all real-time
streaming requirements in this experiment. Using the JIT-
preemption method, our system decreased the interactive
response time from 110 ms to 60 ms by reducing the RAID
idle-time from 7.2 percent to 6.5 percent. When the read IOs
were split between mirror disks (read-splitting), we further
decreased the response time (by reducing the data-transfer
component on each disk) with overhead in terms of
reduced disk idle time.

Read-Intensive Applications. Fig. 20 depicts the aver-
age response times for interactive read requests for read-
intensive real-time streaming applications. The setup was
the same as for write-intensive applications in the previous
experiment, but the system serviced only read IOs. The
streaming rate for noninteractive reads was 129 MB/s. The
interactive IOs were 1 MB each and their arrival rate was
10 req/s. The improvements in average response times
were similar to those in our write-intensive experiment.
Although JIT-preemption with migration did not substan-
tially improve the average response for interactive IOs, the
better load-balance increased idle time. The read-splitting
method split the IO into half and scheduled it to both
replicas, which further decreased the response time, but
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TABLE 1
Trace Summary

Fig. 17. Improvement in the expected waiting time (using disk traces).

Fig. 18. Effect on the achieved disk throughput (using disk traces).

Fig. 19. Average interactive read response times for write-intensive
applications.



substantially reduced the average disk idle time because
of additional seeks.

4.2.2 Response Time for Cascading Interactive IOs

Interactive operations often require isuing multiple IOs for
their completion. For example, a video-on-demand systems
may first fetch metadata containing information about the
position of requested frame in a file. Another example is a
video surveillance system supporting complex interactive
queries with data dependences.

In order to show how preemptions help when the
interactive operation consists of issuing multiple IO requests
in a cascade, we performed the following experiment. The
background, noninteractive workload consisted of both read
andwrite IOs, each external IO being 2MB long.We used the
RAID0/1 configurationwith eight disks. The sizes of internal
IOs were between 0 and 2 MB and the interactive IOs were
100 kB each. As soon as one interactive IO completed, we
issued thenext IO in the cascade,measuring the time required
to complete all cascading IOs. Fig. 21 depicts the effect of
cascading interactive IOs on average response time for the
entire operation. The preemptive approach could service six
cascading IOs for interactive operations with 100 ms latency
tolerance, whereas the nonpreemptive approach could
service only two.

4.2.3 Preemption Overhead for Semi-Preemptible IO

In this section, we present results using the Semi-preemp-
tible IO prototype with synthetic workload comprised of
both lower priority and higher priority disk IOs. Table 2
presents the response time for a higher-priority request
when using Semi-preemptible IO in two possible scenarios:
1) The higher-priority request was serviced after the on-
going IO was completed (nonpreemptible IO) and 2) the on-
going IO was preempted to service the higher priority IO
request (Semi-preemptible IO). The results in Table 2
illustrate the case when the ongoing request was a read
request.

Each time a higher priority request preempts a low
priority IO request for disk access, an extra seek is required
to resume servicing the preempted IO at a later time
(implying a loss in disk throughput). Table 2 presents the
average response time and the disk throughput for different
arrival rates of higher-priority requests. For the same size of
low priority IO requests, the average response time did not

increase significantly with the increase in the arrival rate of

higher priority requests. However, the disk throughput

decreased with an increase in the arrival rate of higher

priority requests, as expected.
Table 3 presents the average response time for higher

priority requests depending on their arrival rate (�). The low-

priority requests were 2 MB each. By preempting the on-

going Semi-preemptible IOs, the response time for a high

priority request was reduced by a factor of four. The

maximum response times for Semi-preemptible IO with

andwithout preemptionweremeasured as 34.6ms and 150.1

ms, respectively.

4.2.4 External Waiting Time

In Section 2.1, we explained the difference in the preempt-

ibility of read and write IO requests and introduced the

notion of external waiting time. Table 4 summarizes the

effect of external waiting time on the preemption of write

IO requests. The arrival rate of higher-priority requests was

set to � ¼ 1 req/s.
As shown in Table 4, the average response time for

higher priority requests in the presence of low priority write

IOs is several times greater than for read experiments. Since

the higher priority requests had the same arrival pattern in

both experiments, the average seek time and rotational

delay were the same for both read and write experiments.

The large and often unpredictable external waiting time in

the write case explains these results.
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Fig. 20. Average interactive read response times for read-intensive

applications.

Fig. 21. Response time for cascading interactive IOs.

TABLE 2
The Average Response Time and Disk Throughput for

Nonpreemptive IO (npIO) and Semi-Preemptive IO (spIO)



5 RELATED WORK

Before the pioneering work of [23], [24], [25], it was
assumed that the nature of disk IOs was inherently
nonpreemptible. Daigle and Strosnider [23] proposed
breaking up a large IO into multiple smaller chunks to
reduce the data transfer component (Ttransfer) of the waiting
time for higher priority requests. A minimum chunk size of
one track was proposed. In this paper, we improve upon
the conceptual model of [23] in three respects: 1) In addition
to enabling preemption of the data transfer component, we
show how to enable preemption of the Trot and Tseek

components, 2) we improve upon the bounds for zero-
overhead preemptibility, and 3) we show that making write
IOs preemptible is not as straightforward as it is for read
IOs and propose one possible solution.

Semi-preemptible IO [6] uses a just-in-time seek (JIT-seek)
technique to make the rotational delay preemptible. JIT-
seek can also be used to mask the rotational delay with
useful data prefetching. In order to implement both
methods, our system relies on accurate disk profiling [8],
[26], [27], [28], [29]. Rotational delay masking has been
proposed in multiple forms. Worthington et al. [30] and
Huang and Chiueh [31] present rotational-latency-sensitive
schedulers that consider the rotational position of the disk
arm to make better scheduling decisions. Ganger et al. [14],
[16], [32] proposed freeblock scheduling, wherein the disk arm
services background jobs during the rotational delay
between foreground jobs. Seagate uses a variant of just-in-
time seek [15] in some of its disk drives to reduce power
consumption and noise. Semi-preemptible IO uses similar
techniques to achieve a different goal—to make rotational
delays preemptible.

There is a large body of literature proposing IO
scheduling policies for multimedia and real-time systems
that improve disk response time [33], [34], [35]. Semi-
preemptible IO is orthogonal to these contributions. We
believe that the existing methods can benefit from using
preemptible IO to improve schedulability and further
decrease response time for higher priority requests. For
instance, to model real-time disk IOs, one can draw from
real-time CPU scheduling theory. Molano et al. [24] adapt
the Earliest Deadline First (EDF) algorithm from CPU
scheduling to disk IO scheduling. Since EDF is a
preemptive scheduling algorithm, a higher priority re-
quest must be able to preempt a lower priority request.
However, an on-going disk request cannot be preempted
instantaneously. Applying such classical real-time CPU
scheduling theory is simplified if the preemption granu-
larity is independent of system variables like IO sizes.

Semi-preemptible IO provides such an ability. However,
further investigation is necessary to address the nonlinear
preemption overhead occurring in preemptible disk
scheduling (we present two possible greedy preemptive
scheduling approaches in our related work [7]).

Semi-preemptible IO suits best the systems issuing large
sequential IO requests, of the order of 500 kB and more. For
example, Schindler et al. [9] schedule accesses to track-
aligned extents, which are of the order of 500 kB (one disk
track for current disks). The Google File System [10] often
accesses its 64 MB chunks in nonpreemptive IOs of the order
of one megabyte. Many multimedia schedulers, including
Xtream [11] and Bubbleup [33], use multimegabyte non-
preemptive IOs for storing and retrieving video data.

6 CONCLUSION AND FUTURE WORK

In this paper, we have presented the design of Semi-
preemptible IO and proposed three techniques for reducing
IO waiting-time—chunking of data transfer, just-in-time
seek, and seek-splitting. These techniques enable the
preemption of a disk IO request and thus substantially
reduce the waiting time for a competing higher priority disk
IO. Our empirical study showed that Semi-preemptible IO
reduced the waiting time for both read and write requests
significantly when compared with nonpreemptible IOs.
Using both synthetic and trace workloads, we have shown
that these techniques can be efficiently implemented, given
detailed disk parameters [6], [7], [8]. We have also
presented two methods for deciding how to preempt
ongoing IOs in multidisk systems—JIT-preemption and
JIT-migration. These two methods ensure that disk IO
preemptions happen in a rotationally efficient manner. The
Semi-preemptible IO mostly benefits systems servicing
noninteractive IOs of the order of 500 kB and larger, with a
moderate number of higher priority, interactive requests.
The examples of these systems are delay-sensitive multi-
media and real-time systems. We plan to further study the
impact of preemptibility on traditional and real-time disk-
scheduling algorithms.
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TABLE 3
Response Time with and without Preemption for 2 MB IOs

(Mean, Standard Deviation �, and Maximum)

TABLE 4
The Expected Waiting Time and Average Response Time for

Nonpreemptible and Semi-Preemptible IO (� ¼ 1 Reqs)
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