
THE XTREAM MULTIMEDIA SYSTEM

Zoran Dimitrijevíc Raju Rangaswami Edward Chang

University of California, Santa Barbara

ABSTRACT

This paper presents the architecture and implementation of
XTREAM, a high-performance streaming multimedia sys-
tem. XTREAM is supported by its three core components:
IO Scheduler, Request Handler, andAdmission Controller.
Via extensive experiments, we show that, thanks to these
core components, XTREAM can achieve low response time
as well as high throughput and high-quality service to si-
multaneous clients.

1. INTRODUCTION

Traditional file systems are optimized for supporting good
interactive performance and high IO throughput. Multime-
dia systems place additional real-time requirements on disk
performance. In these systems, data must be retrieved from
disk and played back by a specific deadline, or else end
users experience unacceptable video jitters or audio pops. A
multimedia user also expects fast access to content, which
translates to a low initial latency requirement for storage
access. Thus, streaming multimedia presents the often con-
flicting requirements of real-time delivery, high throughput,
and short initial latency. For example, reducing the size of
disk requests reduces the initial latency and the required
memory buffer, but this may degrade disk throughput. In
this paper, we present the implementation of XTREAM,
a streaming multimedia system that can achieve the three
performance requirements—high throughput, low initial la-
tency, and guaranteed IO—at the same time.

To guarantee high throughput, XTREAM uses anIO
Schedulermodule for servicing disk IOs. To offer low ini-
tial latency, aRequest Schedulercomponent services new
requests with high priority. To guarantee quality of service
(QoS) to multimedia streams, XTREAM employs anAd-
mission Controllerwhich ensures that all IO requests can be
completed in time and that the system is not under-utilized.
The design of XTREAM is based on accurate disk drive
modeling, using our disk profiling tool [1].

XTREAM runs in the user mode. It supports heteroge-
nous streaming media types (with different bit-rates) as well
as non-real-time data retrieval. It supports guaranteed-rate
IO for both write (e.g., recording by a surveillance camera)
and read streams (e.g., mp3 or video playback). XTREAM

scheduler supports servicing non-real-time data like text or
html while meeting all real-time streaming requirements.

The rest of this paper is organized as follows: In Sec-
tion 2, we present the design of XTREAM. In Section 3,
we evaluate its performance. We present related work in
Section 4 and suggest future directions in Section 5.

2. SYSTEM DESIGN

The XTREAM service model consists of one or more clients
connecting to a server to request multimedia data stored
on the server’s disk drive. The client could be desktop re-
questing a video-on-demand service, a surveillance camera
recording video, or simply a web-browser requesting html
data. In this model, we assume that no bottleneck exists in
the interconnection network between server and clients.

IO Scheduler

Admission
Controller

Request
Handler

DRAM

Decoder

Client
Proxy

UNIX
Pipe

XTREAM Server

XTREAM Client

S
o

ck
et

Disk

Figure 1: XTREAM system architecture.

As shown in Figure 1, the XTREAM clients include a
proxycomponent which connects to the server on their be-
half and also performs data buffering to mask network band-
width variations. The client is designed such that it can op-
erate with any encoder or decoder application that supports
a UNIX pipe-like interface.

The XTREAM server runs entirely in user space. Its
two functions are to decide if it can admit a new stream
and to maintain the QoS for existing streams. The three re-
quirements of the XTREAM server—high throughput, low
initial latency, and guaranteed IO—are addressed by the
three components within XTREAM. TheIO Scheduleruses
the time cycle model [2] for servicing disk IOs; theRequest
Handler preempts the IO scheduler for servicing new re-
quests promptly; theAdmission Controllerguarantees QoS
for soft-real-time streams while ensuring that non-real-time



data retrievals are not starved. In addition, XTREAM uses
a Disk Profiler [1] to obtain a realistic model required to
predict disk performance and provide real-time streaming
guarantees.

2.1. IO Scheduler
XTREAM adopts a single-thread IO paradigm wherein the
IO scheduler performs all disk IOs inside a single thread. It
uses the time cycle model [2], which divides time into basic
units called time cycles (T ). In each cycle, XTREAM ser-
vices exactly one disk IO per stream. The size of the IO is
chosen so that the display buffer does not underflow before
the next IO for the same stream is performed. Unlike that
in the original time cycle model, the scheduling order for
stream IOs may vary between cycles. Using adouble buffer
for each stream, which can sustain playback for as much as
two time cycles, makes the initial latency bound indepen-
dent of the number of streams being serviced and reduces
it to the duration of a single disk IO (see Section 2.2). In
contrast, the simple multi-threaded approach services each
stream using a dedicated thread. Four advantages of the
single-thread IO paradigm used in XTREAM are:

Deterministic execution: Since a single thread is per-
forming all disk IOs, the IO schedule is deterministic, which
enables soft-real-time guarantees. In the multi-threaded IO
model, the OS scheduling determines the IO order, and we
cannot predict when any IO will be serviced.

Controlled IO variability: IO variability is defined as
the fluctuations in time between successive IOs for the same
stream. Large IO variability requires more in-memory buffer-
ing and increases the system cost. The single-thread model
controls IO variability by performing at least one IO for
each stream in each cycle. This approach is not possible
in the simple multi-threaded design.

Contiguous IOs: Since the operating system might break
up a large IO request into multiple small ones, an IO oper-
ation for a single stream might incur multiple disk accesses
simply due to thread-switching in a multi-threaded design.
However, in the single-threaded design, the operating sys-
tem cannot interleave IOs for different streams, which en-
sures that an IO operation to the disk is indeed sequential.

Fairness: In the single-thread IO model, we can incor-
porate service for non-real-time requests simply by reserv-
ing a fixed portion of each cycle for non-real-time jobs.

2.2. Request Handler
When a new request arrives in the XTREAM system, the
request handler module is invoked to service it. The re-
quest handler, in turn, invokes the admission controller to
determine if the new request can be serviced. If it can, the
request handler preempts the IO scheduler as soon as it fin-
ishes its current IO job. It then adds the request to the head
of the IO service queue, which is used by the IO scheduler
to determine the service order. We can make the following
observations for this approach:

1. The initial latency does not depend on the number of
streams in the system. It is simply the sum of the max-
imum time required to service a single IO for any exist-
ing stream and the time required to perform the initial IO
for filling up the buffer of the new stream. This approach
comes at the cost of double buffering, which frees the IO
scheduler from having to maintain the same IO order be-
tween time cycles. If required, the initial latency can be
further decreased by using preemptible disk access meth-
ods proposed in [4].

2. The double buffering scheme also frees IO scheduler
from usingfixed-stretch[3], in which the IO for a stream
must be started exactly at the same time relative to the
beginning of each cycle. In a system which services both
real-time streams and non-real-time requests, a fixed-stretch
IO restriction might lead to under-utilization of disk band-
width because of variability in both the number of streams
and their bit-rates. In contrast, the double buffering scheme
can tolerate these phenomena easily.

2.3. Admission Controller
The admission controller must ensure that the XTREAM
server will not be overloaded if a new stream is admitted. At
the same time, it should not deny service to a new request
that will not overload the server. The two main objectives of
the admission controller are maintaining QoS and avoiding
under-utilization of the server.

Figure 2 depicts the availableslack in each time cy-
cle for two scenarios. Figures 2(a) and 2(b) illustrate the
variations of available slack when the XTREAM server is
slightly overloaded (i.e., cannot maintain real-time guaran-
tees) and under-utilized (i.e., can admit more streams) re-
spectively. Only when the available slack is always greater
than zero will the system be able to fulfill all deadlines and
support all streams in real-time.

-200

0

200

400

600

800

1000

60 80 100120140160180200

Av
ai

la
bl

e 
sl

ac
k 

tim
e 

[m
s]

Cycle number

(a) Overloaded server

-200

0

200

400

600

800

1000

60 80 100120140160180200

Av
ai

la
bl

e 
sl

ac
k 

tim
e 

[m
s]

Cycle number

(b) Under-utilized server

Figure 2: Available slack in each time cycle.

In order to achieve the two design objectives, XTREAM
must be able to predict the disk-throughput utilization accu-
rately. This is a challenging problem because the disk per-
formance varies significantly depending on the disk access
pattern and the file-system data placement policies. How-
ever, to remain independent of the underlying file-system,
XTREAM does not make any assumptions about file-system



data layout on the disk, nor does it attempt to control the file
placement. The only assumption made is that a single IO is
sequential which is reasonable for multimedia files with a
large ratio of file size to IO size. This feature of XTREAM
allows it to work with almost any file-system.

To perform good admission control under these restic-
tions, XTREAM relies on accurate modeling of disk-drive
performance based on disk profiling. Equation 1 offers a
simple model for disk utilization (U ) which depends on the
number of IO requests in one cycle (N ). The transfer time
(Ttransfer) is the total time that the disk spends in data
transfer from disk media in a time cycle. The access time
(Taccess) is the average access penalty for each IO request,
which includes both the disk seek time and rotational delay.

U =
Ttransfer

N × Taccess + Ttransfer
(1)

Since the disk utilizationU depends only on the number of
requests and the total amount of data transfered in a time cy-
cle, it can be expressed as a function of just one parameter:
the average IO request size (Savg).

0

5000

10000

15000

20000

25000

30000

0 2 4 6 8 10

Th
ro

ug
hp

ut
 [k

B/
s]

Average IO request size [MB]

Mean
Min

Figure 3: Disk throughput vs. average IO size.

We use our disk profiler tool to measure the disk-through-
put utilization. The profiler performs sequential reads of
the same size from random positions on the disk. Figure 3
shows the achieved disk throughput depending on the aver-
age IO request size. We propose and evaluate two classes of
approaches for admission control: (1)conservativeand (2)
aggressive. The conservative class provides the best QoS
level for all streams, while the aggressive class provides
support for tunable QoS levels.

Let the bit-rate of each streami in the system be denoted
by BRi. When a new request arrives (with required bit-rate
BRnew), the admission controller first calculates the new
average IO request size using Equation 2.

Savg =
T × (BRnew +

∑N
i=1 BRi)

N + 1
(2)

In the next step, we obtain the predicted disk utilization,
P (Savg), for an average request size ofSavg from the disk
utilization curve (Figure 3). Then, if the condition in Equa-
tion 3 holds, the new request is accepted.

P (Savg) > BRnew +
N∑

i=1

BRi (3)

3. RESULTS

In this section we evaluate the XTREAM system using the
following metrics: 1) maximum system throughput, 2) ini-
tial latency, and 3) accuracy of admission control methods.
We use an Intel Pentium 41.5 GHz Linux based PC, with
512 MB of main memory and a WD400BB40 GB hard
drive. The maximum sequential disk throughput is31 MBps
in the fastest zone and21 MBps in the slowest zone. The
LAN is 100 Mbps ethernet which enables streaming several
mpeg2 and a large number of mpeg4 encoded videos.

In order to evaluate the hard disk scheduler, a client can
require “dummy” streaming with constant (CBR) or vari-
able bit-rate (VBR). Dummy streams are not streamed over
the network. The client can specify whether the dummy
stream is read or write, and whether the bit-rate is constant
or variable.

3.1. Throughput

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

Pe
rc

en
ta

ge
 o

f m
iss

ed
 d

ea
dl

in
es

 [%
]

Total bitrate [MB/s]

CBR = 250 kBps
CBR=1000 kBps
CBR=2000 kBps

Figure 4: Percentage of missed cycle deadlines.

Figure 4 shows the percentage of missed cycle deadlines
depending on the total bit-rate of serviced streams. In each
of the three experiments (denoted by the three lines), all ser-
viced streams have the same bit-rate. Larger bit-rates result
in larger disk IOs, and consequently higher disk utilization
(See Figure 3). In each experiment, we use time cycle of
one second. Since one of the main goals of the system is to
maintain real-time guarantees, the maximum throughput of
the system is the maximum value on x-axis when the sys-
tem does not miss any deadlines. Depending on the required
QoS, the admission control module can choose an appropri-
ate maximum throughput (total bit-rate) for the disk. Thus,
the trade-off between QoS and system throughput decides
the admission control policy. Table 1 shows XTREAM’s
accuracy for one conservative and two aggressive admission
control policies.

3.2. Initial Latency
In this paper we defineinitial latencyas the delay between
the moment the request handler receives a client request,



and the moment when the initial buffer for the new stream is
filled. Data on the initial latency, depending on the number
of streams in the system, are presented in Figure 5. The
initial latency does not depend on the load of the system
but only on the size of IO requests (which depends on the
stream bit-rates). The following results do not consider or
evaluate network or client-side latency.

0

50

100

150

200

0 5 10 15 20 25 30 35 40 45

In
itia

l la
te

nc
y 

[m
s]

Number of clients

CBR = 250 kBps
CBR=1000 kBps
CBR=2000 kBps

Figure 5: Initial latency.

3.3. Guaranteed IO
For a streaming multimedia system to guarantee QoS for IO,
its admission control policy must be accurate. In this sec-
tion, we evaluate the three different admission control con-
figurations introduced in Section 2.3: conservative admis-
sion control (Adm1) and two aggressive admission controls
(Adm2 andAdm3). Adm1 uses the min curve from Fig-
ure 3 to perform admission control.Adm2 uses the mean
curve from Figure 3 and maximum stream bit-rates.Adm3
uses mean curve from Figure 3 and average stream bit-rates.

Avg. BR Type MaxN Adm1 Adm2 Adm3
250 kBps C 44 39 43 n/a

1000 kBps C 20 14 15 n/a
2000 kBps C 12 9 10 n/a
250 kBps V 44 30 34 43

1000 kBps V 23 11 12 15
2000 kBps V 11 7 8 10
250 kBps H 44 39 43 n/a

1000 kBps H 16 14 15 n/a
2000 kBps H 10 9 10 n/a

Table 1: Admission control accuracy.

To determine the accuracy of the three admission con-
trol configurations, we performed experiments for the fol-
lowing two scenarios: homogeneousCBR (type C) and
V BR (typeV ) streams where all serviced streams have the
same bit-rate; and heterogenousCBR streams (typeH)
where each stream has a constant bit-rate, but the bit-rate
for individual streams in the system varies between1/10
and10 times the average value.MaxN denotes the maxi-
mum number of streams that the system can support without
missing deadlines.MaxN is calculated manually within
each experiment using trial and error. The results presented
in Table 1 show that XTREAM provides QoS for disk IO
while not significantly under-utilizing the system.

4. RELATED WORK

Multimedia file-system efforts in recent years include [5, 6,
7, 8, 9, 10]. Of these, the industry initiatives usually do not
disclose their implementations. To the best of our knowl-
edge, unlike XTREAM, existing admission controllers for
streaming multimedia systems do not use disk modeling
based on low-level disk profiling.

5. CONCLUSION

High performance in XTREAM is achieved by its three core
components:IO Scheduler, Request Handler, andAdmis-
sion Controller. In addition, XTREAM uses aDisk Profiler
to accurately estimate the performance of the hard-disk. We
plan to further our research in two directions. First, we plan
to investigate how preemptible disk access [4] can further
improve the initial latency of our scheduler. Second, we
plan to implement the XTREAM IO scheduler in the Linux
kernel and investigate new admission control strategies in
the kernel space implementation.

6. REFERENCES

[1] Z. Dimitrijevic, R. Rangaswami, E. Chang, D. Watson,
and A. Acharya, “Diskbench,”
http://www.cs.ucsb.edu/∼zoran/papers/db01.pdf, 2001.

[2] P. V. Rangen, H. Vin, and S. Ramanathan, “Designing
an on-demand multimedia service,”IEEE Communica-
tions Magazine, pp. 56–64, July 1992.

[3] E. Chang and H. Garcia-Molina, “Effective memory
use in a media server,”Proc. of the 23rd VLDB Confer-
ence, pp. 496–505, August 1997.

[4] Z. Dimitrijevic, R. Rangaswami, and E. Chang, “Vir-
tual IO: Preemptible disk access,”
http://www.cs.ucsb.edu/∼zoran/papers/vio02x.pdf,
UCSB Technical Report, April 2002.

[5] R. Haskin and F. Schmuck, “The tiger shark filesys-
tem,” IEEE COMPCON, 1996.

[6] M. Holton and R. Das, “Xfs: A next generation jour-
nalled 64-bit filesystem with guaranteed rate IO,”SGI
Technical Report, 1996.

[7] C. Martin, P. Narayan, B. Ozden, and R. Rastogi, “The
fellini multimedia storage system,”Journal of Digital
Libraries, 1997.

[8] A. Molano, K. Juvva, and R. Rajkumar, “Guaranteeing
timing constraints for disk accesses in RT-Mach,”Real
Time Systems Symposium, 1997.

[9] P. Shenoy, P. Goyal, S. S. Rao, and H. Vin, “Sym-
phony: An integrated multimedia file system,”Proc.
of the Multimedia Computing and Networking, 1998.

[10] V. Sundaram, A. Chandra, P. Goyal, P. Shenoy,
J. Sahni, and H. Vin, “Application performance in the
qlinux multimedia operating system,”ACM Multime-
dia, 2000.


