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Abstract medium, and there are no alternative technologies which
show promise for replacing them in the next decade [20].
The performance of streaming media servers has bee®isk access times, however, are improving at the rate of only
limited due to the dual requirements of high throughput and10% per year. For more than a decade they have continued
low memory use. Although disk throughput has been enjoyto lag behind the annual disk throughput increase G
ing a40% annual increase, slower improvements in disk ac-and capacity increase 60% [20]. Due to the increasing
cess times necessitate the use of large DRAM buffers to ingap between the improvements in disk bandwidth and disk
prove the overall streaming throughput. MEMS-based stor-access times (both seek time and rotational delay), achieving
age is an exciting new technology that promises to bridge thdnigh disk throughput necessitates accessing the disk drive in
widening performance gap between DRAM and disk-drivedarger chunks. This translates to a rapidly-increasing DRAM
in the memory hierarchy. This paper explores the impact ofouffering cost. A large DRAM buffer is especially necessary
integrating these devices into the memory hierarchy on thdor servers which stream to a large number of clients. Mul-
class of streaming media applications. We evaluate the ustimedia server architects have tried to cope with this perfor-
of MEMS-based storage for buffering and caching stream-mance gap by proposing solutions ranging from simple re-
ing data. We also show how a bank ofMEMS devices source trade-offs [13, 25] to more complex ones that require
can be managed in either configuration and that they cansubstantial engineering effort [2, 7, 10].
provide ak-fold improvement in both throughput and ac-  Micro-electro-mechanical-systems (MEMS) based stor-
cess latency. An extensive analytical study shows that usingge is an emerging technology that promises to bridge the
MEMS storage can reduce the buffering cost and improveperformance gap between magnetic disks and DRAM [1].
the throughput of streaming servers significantly. MEMS devices are predicted to be an order of magnitude
cheaper than DRAM, while offering an order of magnitude
faster access times than disk drives [16]. These devices of-
1 1 ducti fer a unique low-cost solution for streaming applications. In
ntroduction this study, we propose an analytical framework to evaluate
Applications such as news or video on demand, distancéhe effective use of MEMS devices in a streaming media
learning, scientific visualization, and immersive virtual real- server. Specifically, we derive analytical models for study-
ity must store, maintain, and retrieve large volumes of realing two MEMS configurationsusing MEMS storage as a
time data. These data are collectively referred toasinu-  bufferbetween DRAM and disk, andsing MEMS storage
ousor streamingmedia. They require storage architecturesas a cache
that can accommodate their real-time delivery constraints
as well as their large sizes. Economical delivery of these ® MEMS buffer When MEMS storage is used as a speed-
data requires that such architectures also provide high disk ~ Matching buffer between the disk drive and DRAM, all
throughput and minimize memory usage. Qata retrieved from the disk to DRAM are first retrieved
Even after the long reign of Moore’s Law, the basic mem- into the MEMS buffer and then transferred to DRAM.
ory hierarchy in computer systems has not changed sig-
nificantly. At the non-volatile end, magnetic disks have
managed to survive as the most cost-effective mass storage

¢ MEMS cacheWhen MEMS storage is used as a cache,
it stores popular multimedia streams in their entirety.

*This research was supported by SONY/UC DiMI and the NSF CISE MEMS'based storage p.rovides access C.haraCteriStiCS Su-
Infrastructure grant EIA-0080134. perior to those of disk drives, thus reducing the DRAM



buffering requirement. In addition, being a magnitude device [5, 16] depicted in Figure 1. They propose MEMS
cheaper than DRAM, MEMS devices can improve the diskdevices which would be fabricated on-chip, but would use a
throughput by providing low-cost buffering for large disk spring-mounted magnetic media sled as a storage medium.
IO0s. Caching popular content on MEMS storage can alsdl'he media sled is placed above a two-dimensional array of
reduce the DRAM buffer requirement and improve the totalmicro-electro-mechanical read/write heads (tips). Actuators
streaming throughput of the media server. At first glance move the media sled above the array of fixed tips along both
the issues involved in placing MEMS storage between thahe X and Y dimensions. Moving along the Y dimension at
DRAM and the disk-drive, either as a buffer or as a cachea constant velocity enables the tips to concurrently access
seem straightforward enough. However, the real-time IO redata stored on the media sled. Using a large number of tips
qguirement of the media data and the mismatch between th@f the order of thousands) concurrently, such a device can
transfer rates of disk and DRAM make some MEMS stor-deliver high data throughput. The light-weight media sled of
age configurations unfeasible or counter-productive. Outhe MEMS device can be moved and positioned much faster
extensive analytical and empirical studies reveal the follow-than bulkier disk servo-mechanisms, thus cutting down ac-
ing design principles: (i) when used to buffer streaming datacess times by an order of magnitude.

MEMS storage must be used to buffer only low and medium
bit-rate streams, (ii) When the streaming content has a non-
uniform popularity distribution, MEMS-based disk caching
can improve the server throughput regardless of the bit-rate
of the streams serviced. We shall examine these principles
further in the experimental section.

This work has led to several research contributions. Pri-
marily, it takes the first step toward understanding the role of
MEMS-based storage devices in next-generation streaming
multimedia servers. In particular, we make the following
contributions:

1. We propose using MEMS devices in two possible con-
figurations:MEMS as a buffeandMEMS as a cachéle
also show how a bank @&MEMS devices can be managed

Figure 1. MEMS-based storage architecture.

in either configuration and that they can providé-éold Year ST DE/;'V' Mﬁ/'\a"ls ?i)s(')‘
improvement in both throughput and access latency. Access time [ms] 0.05 n/a 1-11
2. We develop an analytical framework for guarantee- | 2002 | Bandwidth [MB/s] | 2,000 n/a 30— 55
ing real-time constraints in the presence of the additional ggzgdegice $5§-2ggoo 2;: $1003_52$300
MEMS-based storage layer in the memory hierarchy. Capacity [GE] 5 10 1,000
3. Based on our evaluation, we provide guidelines for de- Access time [ms] 0.03 04—-1| 075-7
signing the next generation of streaming media servers ust 2°°7 gzgsggth [MB/s] 1(;20000 3$210 17%6 2300
ing MEMS devices. Cost/device $50-$200 |  $10 | $100- $300
The rest of this paper is organized as follows: Section 2 _ o
briefly explains one possible architecture for the MEMS Table 1. Storage media characteristics.

storage and presents current predictions for future DRAM,
disk, and MEMS storage characteristics. Section 3 intro- Table 1 summarizes important characteristics of different
duces MEMS storage as an intermediate buffer as well as atorage media for the year 2002 and the predicted values for
cache for streaming data. In Section 4 we present a quantthe year 2007. The MEMS device projections are borrowed
tative model for analyzing the two MEMS storage configu- from [16]; the disk drive projections are based on [20]; and
rations. Section 5 presents a performance evaluation of thBRAM predictions are based on [12].
MEMS-based streaming server architecture based on our an- Typically, most storage media are optimized for sequen-
alytical model. Section 6 presents related research. In Sedial access. For instance, the maximum DRAM through-
tion 7, we suggest directions for future work. put is achieved when data is accessed in sequential chunks,
about the size of the largest cache block. These are typically
tens to hundreds of bytes. However, both magnetic disks and
_ MEMS-based storage devices (MEMS) have much longer
2 MEMS-based Storage access times than DRAM. These devices have to be accessed
Researchers at the Carnegie Mellon University have proin much larger chunks to mask the access overheads, the
posed one possible architecture for a MEMS-based storagflEMS device being the faster of the two by an order of



magnitude. Figure 2 shows the effective throughput of the

disk drive and the MEMS device depending on the average MEMS S
IO sizes on these devices. In Figure 2 we use the maximum | 0] ]
access times for servicing MEMS 10 requests, and the aver- . »
age access times for disk 10 requests. <>
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ol ‘ Disk (avg. latency) -~ the disk drive independently. Similar to disk caches found
0 2000 4000 6000 8000 10000 on current-day disk drives, we assume that MEMS storage
Average 10 size (KB) devices would also include on-device caches. In what fol-
lows, we present two possible scenarios in which such an
Figure 2. Effective device throughputs. architecture can be used to improve the performance of a

multimedia system.

3 MEMS-based Streaming 3.1 MEMS Multimedia Buffer

Streaming data is characterized by the dual requirements Using MEMS storage as an intermediate buffer between
of guaranteed-rate 10 and high throughput. To servicethe disk and DRAM enables the disk drive to be better uti-
multiple streams, the disk-drive bandwidth is time-sharedlized. At a fraction of the cost of DRAM, MEMS stor-
among the streams. However, this time-sharing degradesge can provide a large amount of buffering required for
disk throughput. Any system designed for servicing stream-achieving high disk utilization (see Figure 2). Although
ing data must address the inherent trade-off between disSORAM buffering cannot be completely eliminated, the low
throughput and data buffering requirements. access latency of MEMS storage provides high throughput

In this paper, we adopt the time-cycle based schedulingvith significantly lesser DRAM buffering requirement. The
model [13] for scheduling continuous media streams. In thisMEMS device can thus act as a speed-matching buffer be-
model, time is split into basic units called 10 cycles. In eachtween the disk drive and the system memory, in effect ad-
IO cycle, the disk performs exactly one 10 operation for dressing the disk utilization and data buffering trade-off.
each media stream. Given the stream bit-rates]@hey- Using MEMS storage as an intermediate buffer implies
cle timeis the amount of time required to transfer sufficient that the MEMS-based device must handle both disk and
amount of data for each stream so as to sustain jitter-fre®RAM data traffic simultaneously. To understand the ser-
playback. The 1O cycle time depends on the system configvice model, let us assume that the multimedia streams being
uration as well as the number and type of streams requestederviced are all read streams, so that stream data read from
To service multiple streams, the 10 scheduler services thé¢he disk drive is buffered temporarily in the MEMS device
streams in the same order in each time-cycle. Careful manbefore it is read into the DRAM. This model can be easily
agement of data buffers and precise scheduling [2] can reextended to address write streams.
duce the total amount of buffering required to the amount of To service buffered data from the MEMS device, we use
data read in one time-cycle. the time-cycle-based service model previously proposed for

In traditional multimedia servers, the buffering require- disk drives. Data is retrieved in cycles into the DRAM such
ment is addressed using the system memory (DRAM)that no individual stream experiences data underflow at the
MEMS-based storage devices can be used to offload part dRAM. At the same time, the data read from the disk drive
the DRAM buffering requirement. They can also be used asnust be written to the MEMS device. The disk 10 scheduler
caches to provide faster access to multimedia content. Figeontrols the read operations at the disk drive. The MEMS IO
ure 3illustrates the new system architecture that includes thecheduler controls the write operations for data read from
MEMS device in the storage hierarchy. The MEMS storagethe disk as well as read operations into the DRAM. In the
module can consist of multiple MEMS devices to provide steady state, the amount of data being written to the MEMS
greater storage capacity and throughput. The MEMS devicelevice is equal to the amount read from it. The MEMS band-



width is thus split equally among read and write operationsthe MEMS tips, and the DRAM, respectively. In this exam-
Thus, although the MEMS device can help improve disk uti-ple, the system servicd$) streams V = 10). The lightly
lization, we must realize that to do so, it must operate atshaded regions depict data-transfer from the disk drive into
twice the throughput of the disk drive. In order to mini- the MEMS device. The dark regions depict data-transfer be-
mize buffering requirements between the disk drive and thaween the MEMS device and the DRAM. The MEMS device
MEMS storage, the disk and the MEMS 10 schedulers musperformsN small IO transfers between MEMS and DRAM,
therefore co-operate. and M large disk transfers in each MEMS IO cycle.

The MEMS buffer could consist of multiple physical
MEMS devices to provide greater buffering capacity and3.1.2 10 Scheduling: Multiple MEMS

throughput. As we shall see in Section 5, a bank of MEMS ] ) o ]
devices may be required to buffer I0s for a single disk. TheAccording to certain predictions [16, 22], a single MEMS

(predicted) low entry-cost of these devices makes such cor€vice might not be able to support twice the bandwidth of
figurations practical. We now present a feasible 10 schedulduture disk drives. In such cases, a bankkoMEMS de-
that maintains real-time guarantees, when a single MEM/iCeS would provide a higher aggregate bandwidth. Using

device is used for buffering. We then extend our methodol¥ MEMS devices for buffering disk IOs raises interesting
ogy to work with a bank of MEMS devices. guestionsHow should stream data be split across these de-

vices? What constitutes an IO cycle at the MEMS buffer?
To what uses can we put any spare storage or bandwidth at

\3;\'/1'1 0 Sch(:dullng: SI,:)?Iel('\)AE'\f]Sd | hich ‘ the MEMS devices®e answer each question in turn.
¢ nowpresent one possible 1 schedu’er which guaran'ees Placing stream data:Buffered data can be placed in one

real-time data retrieval from the disk using a single-deviceo]c two ways: stripe the buffered data for each stream across
MEMS buffer. The MEMS 10 scheduler services 10s on the MEMS bank or buffer each stream on a single MEMS

the MEMS dew_ce n rognds d0 cycles In each 10 cycle, device. Striping data for each stream acrossith¢EMS
the MEMS device services exactly one DRAM transfer for . . . . .
devices can be accomplished by splitting each disk 10 into

each of thelV streams serviced by the system. The amounzCr parts and routing each part to a different MEMS device
of data read for each stream is sufficient to sustain playbac he size of disk-side 10s performed on the MEMS device

before the next IO for the stream is performed. Further, the . .
. . is reduced by a factor df. Since a smaller average 10O size
MEMS device also service¥ transfers |/ < N) from the : L
—_ ecreases the MEMS device throughput, striping can be un-
disk in each 10 cycle. In the steady state, the total amount Ol csirable
data transferred from the disk to the MEMS buffer is equal

to that transferred from the MEMS buffer to DRAM. Thus, I_nstead of striping the data, the set of streams could be
there exist two distinct 10 cycles, one for the disk (ttisk split across the MEMS bank. Each stream would thus be

IO cycle during whichV 10s are performed on the disk- buffered on a single MEMS device. This would preserve the
drive) and the other for the MEMS buffer (tHdEMS 10 size of disk-side IO transfers. To achieve such a split, the
cycle during whichV 10 transfers occur from the MEMS disk IOs are routed to the MEMS devices in a round-robin

. hoa: .
buffer to the DRAM). fashlon. Evgryk: disk 10 is rputed to the same_MEMS
device. Routing each 10 to a single MEMS device improves
Seek Data Transfer the MEMS throughput and is thus preferable to striping each
Disk Head disk 10 across the MEMS bank.
MEM w
\ @ @ ®
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Figure 4. MEMS 10 Scheduling.

Figure 4 describes the data transfer operations occurring MEMS 10 Cycle

during a single MEMS 10 cycle. The X-axis is the time axis; _ _
the three horizontal lines depict the activity at the disk head, ~ Figure 5. 10 Scheduling for a MEMS bank.



10 Cycle for a k-device MEMS bank: Routing each management policy used for the MEMS bank. With multiple
disk 10 to a single MEMS device splits the set of streamsdevices, we must ensure that the load on the MEMS devices
across thés MEMS devices in the bank. The notion 8 is balanced. In this regard, we can draw on research from
cyclefor the MEMS bank can be defined in the same man-data management policies for disk arrays [3]. We now in-
ner as that for a single device MEMS buffer. It is the time vestigate two cache-management policies, representing two
required to perform exactly one DRAM transfer for each of classes of load balancing strategies, which ensure total load-
the V streams serviced by the system. For the sake of simbalance across the MEMS bank. These approaches make
plicity, let us assume that each MEMS device serviges different trade-offs to optimize for a sub-set of system con-
streams. Figure 5 depicts the operations during an 10 cycléigurations. More sophisticated load-balancing strategies,
at each MEMS device. The number of streafisjs45 and  including hybrid approaches of the above, have been pro-
the number of MEMS devices in the bankis= 3. Foreach  posed in literature [3, 15, 23, 24]. We investigate two sim-
disk 10,15 DRAM transfers take place. The amount of data ple, representative approaches as a first step.
read from and written into the MEMS device is the same in
the steady state. 3.2.1 Striped Cache-management

Using the spare MEMS storage and bandwidth:De-  ysing striped cache-managemergach stream is bit- or
pending on the number and type of streams serviced angyte-striped across all the MEMS devices. There is no
the capacity of the MEMS device bank, spare storage and/ofequndancy, and data for each stream is distributed in round-
bandwidth might be available at the MEMS device. If addi- (opin fashion across the MEMS devices. To perform an 10
tional storage is available at the MEMS device, the operatingyn the MEMS cache, all the devices access exactly the same
system could use it for other non-real-time data: as a persisg|ative data location, in a lock-step fashion. The load is
tent write buffer, as a cache for read data with temporal o5 perfectly balanced across the MEMS cache. The effec-
spatial locality, or as a disk prefetch buffer. The MEMS tje data transfer rate of the MEMS cacheiimes that of
storage can also be used to cache entire streams, as we shaliingle device. The effective access latency of the MEMS
explore next. Spare bandwidth, if available, can be used fogsche is the same as that of a single deviceV,Jf streams

non-real-time traffic. are serviced from the MEMS cache, the total number of seek
_ _ operations in an 1O cycle i& - N,,,. Using striped cache-
3.2 MEMS Multimedia Cache management, perfect load-balancing is achieved at the cost

Multimedia content usually has a well-defined popularity Of reduced access parallelism of the devices.
distribution, and some content are accessed more frequently
than others. Besides using MEMS storage as a buffer fos-2.2  Replicated Cache-management
streaming multimedia data from the disk drive, we can alsoUsingreplicated cache-managemetite cached streams are
use a MEMS storage device as a cache for popular multireplicated on thé& MEMS devices. All the devices store ex-
media content. Since the MEMS device offers low latencyactly the same content. To perform an IO on the MEMS
data access at throughput levels similar to those of the diskeache, any of thé devices can be accessed. If the number
drive, storing popular content on a MEMS cache reduces thef streams serviced from the MEMS caché\is,, then each
buffering requirement for streaming data and hence DRAMMEMS device services exactl% of the streams. Since
cost. By usingk MEMS devices, we can also use the ag- each MEMS device stores all the cached streams, such a
gregate bandwidth of the MEMS cache for improving the division is possible. The effective data transfer rate of the
server throughput. MEMS cache isk times that of a single device. Operating

One significant difference between using a MEMS de-thek devices independently improves parallelism of access.
vice as a cache and using it as a buffer is that with cachingThe total number of seek operations in an 10 cycle is only
the MEMS cache behaves primarily as a read-only devicelV,,, as opposed té- V,, in striped cache-management. Us-
The MEMS cache is updated only to account for changes inng replicated cache-management, perfect load balancing is
stream popularity. This can be accomplished off-line, dur-achieved at the cost of reduced cache size due to data re-
ing service down-time. To service streams from the cachegundancy. In Section 4.2, we further analyze the trade-offs
we use time-cycle-based 10 scheduling. Again, there exisinvolved in each policy.
two distinct IO cycles, one for the streams serviced from the
disk-drive and the other for those serviced from the MEMS4
cache. The performance of either device depends on the
available DRAM buffering and the number of streams ser- In this section we present a quantitative model to an-
viced from it. alyze buffering requirements for systems supporting real-

When more than one MEMS device is used for cachingtime streaming applications using MEMS devices. We dis-
the performance of the MEMS cache depends on the datauss two system configurations:

Quantitative Analysis



e MEMS buffer All data retrieved from the disk to e N: The number of streams that the server supports.
DRAM are firS'[ retrieved intO the MEMS buffel’ and ° B: The average bit_rate Of th@ streams.

then transferred to DRAM. e R;: The data transfer rate of devide R, is substituted

e MEMS cache Selected data are cached on the MEMS by Rg;si (disk transfer rate) oR,,c.,s (MEMS transfer
device. Requested data can be serviced either from therate) depending on where the 10 takes place.

disk-drive or the MEMS cache. e L;: The average latency of deviddn a time-cycle.L,
is substituted byl 4,4 (disk latency) orL,,ems (MEMS
Jpvafamemf Zescl;'lot'o: _ - latency) depending on where the 10 takes plabg.also
umber of continuous media streams H :

B Average bit-rate of the streams servicatl/s] d_epends on the scheduling policy employed to manage de-
k Number of MEMS devices in system viced. . _ .
Raisk Data transfer rate from disk medi&/s] In computing 10 size, we make two assumptions that
ILEmems gata tranlsfer fat? fff()jmk'\/ll(E)MS mE_dﬂB'[;ZS] are commonly used in modeling a media server. First, we

disk verage latency for dis operatio . B _ . .
A Average latency for MEMS 10 operatiofs use t|me cycle bas_ed 10 scheduling (Section 3). Second, to
Caram Unit DRAM cost[$/B] _S|mpI|fy the qnalytlcal model, we assume all streams to be
Crmems Unit MEMS cost[$/B] in constant bit-rate (CBR).We summarize the parameters
Sizemems MEMS capacity per devicgs] used in this paper in Table 2.
Sizedisk Disk capacity 5] : Theorem 1. For a system which streams directly from the
Sdisk—dram Average 10 size from disk to DRANIB| . L. .
Saisk_mems | Average 10 size from disk to MEME5] disk to DR_AM, the minimum size of per—stream DRAM
Smems—dram | Average 10 size from MEMS to DRAMB] buffer required to satisfy real-time requirements is
Tisk Disk 10 cycle|[s] _ _
Trmems MEMS IO CyCIE[S] S N x Ldisk X Rdisk’ x B (3)

disk—dr = =
o 18 ram Rdisk _ N X B bl
Table 2. Parameter definitions. where Rgisx > N X B.

To evaluate the effectiveness of MEMS-based bufferingCorollary 1. To stream directly from the MEMS device to
and caching, we compare the system cost with and withouthe DRAM, the minimum size of per-stream DRAM buffer
MEMS storage. LeCy,.q,n andC,,.ns denote the unit cost required to satisfy real-time requirements is
($/B) of DRAM and MEMS buffer, respectively. Further- NI A

1 X LTVL(:‘TVLS X RT!LE’ULS X B
more, we use a per-device cost model for MEMS storage.  Siems—dram 5
Thek MEMS devices cost X Chems X Siz€mems €VEN if Rmems =N x B
the system does not utilize all the available MEMS storage. where Rmems > N X B.
The proofs for the results presented in this section can be
found in [14].

» (4

Although Theorem 1 is well established [13], calculating 10
sizes is more complex in a system that uses MEMS as an
intermediate buffer between the disk and DRAM because
. _ we must consider the real-time requirements between the
dS'Sk to DRA';/I' Sdmz‘ﬁ/l”g”: frggAs/:SkL t(t)kMdEMSt’ iﬂd disk and MEMS as well as between the MEMS and DRAM.
mems—dram 110M 0 - L€ enote e rheorem 2.For a system which usésMEMS devices as a

numger O]]: NIIEMS dQV|tches n tthe sy_ls:themt; I}ZfE‘tdenotte .ttr;]e cfiSk buffer, the minimum size of per-stream DRAM buffer
nUMBeET of Streams In the system. The butter cost With aNGequired to satisfy real-time requirements is

without the MEMS buffer is
_ CX(].-FQkN;Q)XTdiSk

COSTwithout,mems =N x Cdram X Sdisk—drum (l) Smems—dram = Bx s (5)
Taisk — C

N X Lmems X Rmems

4.1 MEMS Multimedia Buffer
Let Syisk—daram denote the per-stream 10 size from

COSTwith,mems = kx Cmems X Sizemems + where C — .
N x C'dram X Smemsfdram (2) kX Rmems 2 (N + k= 1) x B

Tusk is the largest value such that the following three

wherek x Sizemems > N X Sgisk—mems - USiNg diti i ) ¢ st ) t and
MEMS devices in a streaming system is cost effective onIyCon itions (real-time requirement, storage requirement, an

: scheduling requirement) are satisfied:
if COSTwith,mems < COSTwithout,mems- 9 q )

In order to calculate the system cost, we first calculate 10 N X Lgisk X Raisk
sizes that guarantee the real-time streaming requirements. Taisks = Ryien — N x B (6)
We.neXt compute disk and MEMS 10 sizes given the fol- 1R can be modeled by CBR plus some memory cushion for handling
lowing four input parameters: bit-rate variability [8].




2 X N X Tyisk X B <k x Sizemems @) 4.2.1 Striped Cache Management
Tems M Theorem 3. For a server that employs the striped cache-
Toisk - N’ M <N, M € Integer. (8) management policy across an arra{)ycd);lEMS de\F/)ices for
Corollary 2. When N and M are divisible byk (or are ~ Servingn streams, the minimum size of per-stream DRAM
relatively large compared t6), k MEMS devices behave as Puffer required to satisfy real-time streaming requirements
a single MEMS device with botl times smaller average 'S
latency and: times larger throughput.

g 1 X Lmems X (kX Rpems) X B (12)

mems—dram — = 5

4.2 MEMS Multimedia Cache (k X Rinems) —n % B B
Although streaming data do not have temporal locality, where kX Rinems > 1 X B.

they are often characterized by a non-uniform popularity

distribution. Caching popular content in MEMS storage can™ h inal he i |

decrease the DRAM buffering requirement so that the sysy'ces’ behaves as a single MEMS cache witimes larger

tem can support more streams. ledenote the hit-rate for roughput and unchanged access latency.

the MEMS cache. GiveV streams to service, = N x h :

of them are serviced from the MEMS cache, e (1—h) 4.2.2  Replicated Cache Management .

streams are serviced from the disk. We can express the cos'€0rem 4. For a server that employs the replicated cache-

Corollary 3. A striped cache, consisting @& MEMS de-

of DRAM buffer and MEMS cache as management policy across an arraycdlEMS devices for
servingn streams, the minimum size of per-stream DRAM

COSTyith_mems—cache = k X Ciems X Siz€mems + buffer required to satisfy real-time streaming requirements

hx N x Cdram X Smemsfdram + is

(1 — h) x N x Cdram X Sdisk—dram- (9) g B (n + k— 1) Emlsms (k . RwLean) X B

Using Theorem 1 we can calcula$g;s;—dram as mems—dram = (k- Rmems) — (n+k—1) x B
(1 —h) x N X Lgisp X Raisk x B where k- Rpems > (n+k —1) x B. (13)

Sdiskfdram = (10)

Raisk — (1 —h) x N x B ’ o . .

disk — ( ) X N x _ Corollary 4. When N is divisible by & (or is relatively

where Rgsi > (1 —h) x N x B. large compared t&), k replicated cache behaves as a sin-
In order to calculaté, and S,,cms_dram, let us assume 9le MEMS device withk times larger throughput as well as

that the popularity distribution of content is specified by # times smaller average latency.

X : Y, where X% of the streams are accessEd of

the time. Let us assume that both pOpUIXI%) and_non-_ 5 Experimental Evaluation

popular streamsl(00% — X) are accessed uniformly in their ] ] ) )

class. The capacity of the disKjzegi., is the total storage This section presents an experimental evaluation of a

required for all the streams serviced by the system. Let th&treéaming mulimedia system equipped with MEMS stor-
capacity of a single MEMS device be denoteddige, ,cms. age. We compare its performance to that of a system without

Let the percentage of movies cached be denoted Bynen MEMS storage. We evaluate separately the performance of
the cache hit ratidh, can be expressed as the MEMS device when it is used to buffer streaming data

y _ stored on the disk drive, and when it is used to cache popular
h— { ¥ X w50 if X >p, (11) streams. The evaluation presented in this section is based on

o + T X 1Y otherwise. the analytical model presented in Section 4.
If the MEMS cache_contams a single MEMS device, then sz =meter FutureDisk | G3 MEMS | DRAM
p andS,,ems—dram (USiNg Equation 4) are RPM 20, 000 - -
Max. bandwidth [MB/s] 300 320 10,000
p = S1ZEmems . Average seek [ms] 2.8 - -
SIZEgs, Full stroke seek [ms] 7.0 0.45 -
T > X settle time [ms] - 0.14 -
Sonems—dram n X Linems X Rmem_s x B Capacity per device [GB] 5 10 1,000
Riems —n X B Cost/GB [$] 0.2 1 20
Cost/device [$] 100-300 10 50-200

However, if the cache consists of more than one MEMS de-
vice, bothp and S,,cims—drem depend on the cache man-
agement policy used for accessing the MEMS cache. We
explore the two policies, nameStripedandreplicated in-
troduced in Section 3.2.

Table 3. Performance characteristics of stor-
age devices in the year 2007.
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Figure 6. DRAM requirement for various media types.

To model the performance of the MEMS device, we Theorems 1 and 2 presented in Section 4 define the rela-
closely followed one such model proposed by researcherSonship between the system parameters. To study the sensi-
at Carnegie Mellon University. The work in [16] describes tivity of our evaluation to MEMS device characteristics, we
their model comprehensively. For our experiments, we uséntroduce thdatency ratiq Eid'is’{, as a tunable parameter.
the “3rd Generation” (G3) MEMS device model proposed Latency ratio: We define thdatency ratioas the ratio of the
in [16]. We obtained predictions for disk-drive and DRAM average disk access latency to the maximum MEMS access
performance by using projections on current-day devicesatency. We varied the latency ratio within the rarige 10.
produced by Maxtor [9] and Rambus [12], respectively. The value for this parameter is aroufidor the FutureDisk
These are summarized in Table 3. and the G3 MEMS device listed in Table 3.

In our experiments the average bit-rate of streams, For performance evaluation, we conducted three exper-
was varied within the range aDKB/s to 10MB/s. Sincethe iments. In the first two experiments, we assumed that
maximum bandwidth of the FutureDisRy; s, is S00MB/s, the maximum amount of DRAM and MEMS storage was
it can support tens of high-definition streams at a fewunlimited. We also used a cost-per-byte price model for
megabytes per second each, more than a hundred conrMEMS storage. These relaxations allowed us to observe
pressed MPEG2 (DVD quality) streamsl&dB/s, or athou-  the relationship between the system parameters. In the third
sand DivX (MPEG4) streams d00KB/s, or even tens of experiment, we performed a case-study using an “off-the-
thousands of MP3 audio at a bit-rate BfKB/s. To min-  shelf” system which could be developed by the year 2007.
imize the mis-prediction of seek-access characteristics folThe available buffering on this system is limited, and its size
the MEMS device, we assume that MEMS accesbgs,,s,  is based on current trends in server system configurations.
always experience the maximum device latency. We use o )
scheduler-determined latency valudsy;sx, for disk ac- 2-1.1 Reduction in DRAM requirement
cesses. The disk IO scheduler uses elevator scheduling 40 Figure 6, we vary the number of stream§, and the av-

optimize for disk utilization. erage stream bit-ratd. We plot the DRAM requirement
on the Y-axis. The X and Y axes are drawn to logarithmic
51 MEMS Multimedia Buffer scale. The total buffering requirement increases rapidly with

the number of streams (according to Equations 1 and 4). For
As mentioned in Section 3, using MEMS storage 10 3 fixed system throughput, the buffering requirement is thus
buffer streaming data requires that it supports twice themych larger for smaller bit-rates than for larger ones. In the
streaming bandwidth of the disk-drive. In our experi- ghsence of a MEMS buffer, the DRAM requirement for a
ments, we used at least two G3 MEMS devices for buffer-t)iy utilized disk ranges from GB for 10MB/s streams to
ing the streaming data, which provided a maximum aggre 1B for 10KB/s streams. With a MEMS buffer, the DRAM

gate MEMS throughput 0840 MB/s. To evaluate the per-  requirement is reduced by an order of magnitude to support
formance of the MEMS multimedia buffer, our experiments g given system throughput.

aimed to determine the reduction in DRAM requirement as

well as overall system cost due to the addition of MEMS5.1.2  Reduction in Cost

storage. In addition, we also determined the sensitivity ofAddition of a MEMS buffer reduces DRAM requirement.
the above metrics to variations in MEMS device characterHowever, we must take the total system cost into account
istics. before reaching a conclusion about the benefits. To calculate
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Figure 7. Percentage cost reduction.

the cost of buffering, we use cost predictions as presented i6.1.3 A Parameter Sensitivity Study
Table 3. According to the predictions, MEMS buffering is We now present a hypothetical off-the-shelf system which
20 times cheaper than DRAM buffering per-byte. could be developed in the future. We determine the sensi-
tivity of cost-reductions to unpredictable trend changes in
device characteristics by varying tteency-ratio?

In our earlier experiments, we assumed that the system

100000 Avg. bitrate ‘ ‘ could use an unlimited amount of DRAM and/or MEMS
I i — ] storage. However, a system with terabytes of DRAM and/or
& 00t D M el buffering would be prohibitively expensive. In the follow-
g 100 | ing experiment, we restricted the system configuration to an
B w0l off-the-shelf system projected for the yer)07 (Table 3).
8 The maximum DRAM size is restricted &> B and20GB
g ol of MEMS buffering is used by adding two MEMS devices.
01p The cost of the MEMS buffer i820, thereby restricting the
001} o° - cost-savings to a maximum 86%.
0.001 T ‘ ‘ ‘ Figure 7(a) depicts the percentage reduction in the buffer-
1 10 100 1000 ~ 10000 100000 ing cost for different average stream bit-rates when the la-

Number of streams tency ratio is varied. As the latency-ratio is increased,

the MEMS device can deliver higher throughputs with less
Figure 8. Reduction in the total buffering cost. buffering. As a result, the buffering cost is reduced. When
the average bit-rate is increased, the performance of both
the disk drive and the MEMS device improves. The differ-
Figure 8 shows the reduction in total buffering cost, in- ential improvement in throughput for the MEMS device is
cluding the additional cost of the MEMS buffer. In spite of greater. However, beyond a certain average bit-reMB(s
the addition of the MEMS buffer, the total cost of buffer- in this case), the DRAM requirement in the absence of the
ing is reduced for all media types. Cost savings range fromMEMS buffer is small, and the availabi&B DRAM buffer
tens of dollars for high bit-rate streams to tens of thousandss under-utilized even without the MEMS buffer. In the ab-
of dollars for lower bit-rates. These cost savings are almosgence of a MEMS buffer, the DRAM requirement for the
directly proportional to the DRAM reductions presented in 10MB/s bit-rate range is approximately5GB, thereby lim-
Figure 6, since the fractional cost-addition due to the MEMSiting the cost-reduction to onl§0%.
storage is negligible. This curve also shows that using a In Figure 7(b), contour lines on the XY-plane depict the
MEMS buffer for streaming large bit-rates does not offer aregions in which the percentages of reduction in total buffer-
significant reduction in the buffering cost. Indeed, for large—; — L
bit-rates, even DRAM buffering is sufficient to achieve high We also investigated the sensitivity of the MEMS buffer performance
to the cost and bandwidth values. Our conclusion (that MEMS buffering
disk utilization. Upon calculation, we found that the cost- is effective for low and medium bit-rate traffic) holds true as long as the
reduction ranges betwe&0% and90% dependmg on the MEMS device is an order of magnitude cheaper than DRAM and provides
number of streamsy, and their average bit- rateB, streaming bandwidths comparable to or greater than those of disk-drives.
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Figure 9. MEMS cache performance.

ing costs are25%, 50%, and75%. The MEMS buffer is amount of DRAM buffering available b§00MB in order
cost-effective almost over the entire parameter space, witho keep the cost invariant. The popularity distribution fol-
at least &0% to 75% reduction in the total buffering cost.  lows X:Y, where X% of the streams are accesset of
the time. We also assumed that &% of the streams were
52 MEMS Multimedia Cache equally popular. Similarly, we assumed that the remaining
i . (100-X)% of the streams were equally unpopular. We con-

_ When streaming content has a non-uniform access probgy,cted the same experiment for three different values of the
bility, then a MEMS cache for popular streams can improveygia| pyffering cost$50, $100, and$200. At these costs, the
the performance of a multimedia server as analyzed in SeGyumpers of MEMS devices;, used for caching are chosen
tion 4. To measure the performance of the MEMS cache, Weis1 o and4 respectively. The entire experiment was per-
calculated the improvement in the server throughput (NUM+grmed for two different average stream bit-rate8KB/s,
ber of additional streams serviced) using a MEMS cache by, 41 vB/s.
fixing the total cost of the system. The additional cost of
using a MEMS cache is reflected by a reduced amount 06.2.1  Effect of popularity distribution
available DRAM bufferi_ng. We evaluated the performancg,:igure 9(a) compares the performance of the two cache-
of the MEMS cache using the two cache-management polimanagement policiestripedandreplicated against a sys-
cies described in Section 8tripedandreplicated ~ tem without a MEMS cache. The X-axis represents the

The number of streams serviced from the MEMS devicepopularity distribution and the Y-axis represents the server
depends on the number of cache hits (it follows Equation 9)throughput in terms of the number of streams serviced. The
In our experiments, we assumed that if a stream was founglverage stream bit-rate is fixed @KB/s. A uniform pop-
in the cache, it would be serviced only from the cache ularity distribution is denoted by the point 50:50 along the

The performance of the MEMS cache depends on four-axis. Whenk = 1, the replicated and striped caching
parameters: the popularity distribution, the total systemjs equivalent. For skewed popularity distributions of 1:99,
cost, the average stream bit-rate, and the size of the MEM$:95, and 10:90, both cache management policies outper-
bank. To evaluate the impact of these parameters, we cofform the system without the MEMS cache. However, when
ducted the following experiment. We fixed the cost of the the popularity distribution leans toward the uniform side, the
system and varied the popularity distribution to determineMEMS caching is not cost-effective. The MEMS cache is
the server throughput with and without a MEMS cache.able to store only a small fraction of the popular content,
Each MEMS caching device that we added reduced thehereby failing to offset its cost.

3It can be shown that the performance of the cache can be further en- We can also compare the_ relative performance .Of the
hanced by off-loading the servicing of some popular streams to the disdWO cache-management policies. When the popularity dis-
drive if the disk is under-utilized. We leave this study for future work. tribution is greatly skewed (1:99), the replicated cache-
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management policy supports the maximum number of Figure 10 shows the effect of varying the size of the
streams. Since all the popular streams are available on thlEMS cachef, on the improvement in the server through-
cache regardless of which policy is used, replication output. Striped cache-management policy is used for this ex-
performs striping by offering much lower average access laperiment. The total cost of buffering and caching with and
tencies to the MEMS cache. This is not the case for morevithout the MEMS cache is fixed &t100 and the system
uniform popularity distributions, wherein striping can cache serves an average bit-rate dfoKB/s. Each MEMS device

more popular content than replication can. can cachd % of the content. A is increased, the size and
throughput of the MEMS cache also increase. However, to
5.2.2 Effect of varying the total cost keep the total cost invariant, the available DRAM buffer size

If the cost of the system is flexible, a system designerfjecreases. Hence, for each popularity distribution, there ex-

must know the size of the MEMS cache and DRAM buffer 1StS @ unique optimal size for the MEMS bank. When the
which provides the best server performance. Caching irnpopularity distribution is uniform, represented by 50:50, the
proves system performance when the number of MEMS de'—vIE'VIS F:ache glwgys degrades performance. For skewed
vices is large enough to cache a majority of the populalp()pma_”ty distributions (1:99, 5:95, and 10:90), the MEMS
movies. More MEMS devices can be used for caching wheﬁ:aChe improves the server throughput by as much4s.

the available budget for buffering and caching is sufficient.

The greater the available budget, the bigger the range o6  Related Work

popularity distributions wherein the MEMS cache is cost-
effective. For instance, in Figure 9(a), with$a0 budget,
the MEMS cache (using one MEMS device) is cost-effective
only within the popularity range of 1:99 to 5:95. With a
higher budget$200), the MEMS cache with four devices is
cost-effective over a greater popularity range, 1:99 to 20:80

Multimedia workloads fall into two main categories: (1)
best-effortand (2)real-time Thebest-effortclass of multi-
media data usually displays spatial and/or temporal locality
attributes. Traditional caching policies [18] are well suited
for such applications. The work of [16] shows that including
a MEMS-based cache in the storage hierarchy can improve
I/0O response time by up t8.5X for best-effort data. The
5.2.3 Effect of varying the average stream bit-rate focus of this work is to examine if such an addition can also
Unlike the MEMS bulffer, the performance improvement dueimprove the performance of the real-time class of multime-
to the MEMS cache is almost independent of the bit-ratedia data.
of the streams serviced. Figures 9(a) and (b) show this be- To service real-time disk 10s, two classes of scheduling
havior. Regardless of the bit-rate, addition of one or morealgorithms have been proposeQuality Proportion Multi-
MEMS devices increases the total streaming capacity of th&ubscriber ServicingQPMS ortime-cyclebased schedul-
server. An interesting behavior that depends on the bit-raténg) [13] and theEarliest Deadline First (EDFJ]4] are rep-
occurs in the case without the MEMS cache. In Figure 9(b) resentative scheduling algorithms. Several improvements to
the additional improvement for buffering costsfifd0 and  these algorithms have been since investigated [2, 21, 10, 17].
$200 are negligible. For large bit-rates, even a small amountn this paper, we built upon the time-cycle model [13] for
of buffering is sufficient for utilizing the disk throughput.  scheduling continuous media on MEMS devices.

Scheduling multimedia streams onkadevice MEMS
5.2.4 Effect of varying the number of MEMS devices bank is similar to scheduling streams on a disk array. How-
ever, using a MEMS bank as a disk buffer must consider the
real-time requirements between the disk and MEMS storage

160

w0 | | Popularity as well as between MEMS storage and DRAM. On the other
5:95 —x— hand, disk load balancing policies [3, 15, 23, 24] are directly
o8 applicable to a MEMS bank when it is used as a cache. We

5050 oeees investigated two representative policies from previous work

on disk arrays for a MEMS bank.

7 Conclusions and Future Work

We have investigated the possibility of using MEMS stor-
age for buffering and caching streaming multimedia content.
Summarizing our findings, MEMS storage can improve the
performance of streaming media servers by providing low-
access latency and high throughput for accessing streaming
data. We propose using MEMS storage in two possible con-

Improvement in throughput (%)

Number of MEMS devices (k)

Figure 10. Varying the size of the MEMS cache.
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figurations:MEMS as a multimedia buffemdMEMS as a
multimedia cacheWe have developed an analytical frame-
work for evaluating each of these configurations while using
either a single MEMS device or k-device MEMS bank.

Based on our analytical study we have provided the fol-
lowing design guidelines: (i) for low and medium bit-rate
streams, using MEMS storage as buffer reduces the cost of
designing server systems by as much as an order of magq1j
nitude, (i) when the popularity distribution is non-uniform, [12]
the server throughput can be improved by caching data in th§13]

MEMS device. The MEMS device improves access to pop-

ular content and also provides additional streaming band—[14

width, regardless of the stream bit-rates.
Although this is a somewhat speculative study, several
research and industry efforts [1, 6, 11, 19, 22] suggest that

commercially mass-produced MEMS storage devices ar 15]

only a few years away. Thus, it is necessary to start think-
ing now about the architectural impact of these devices on
current applications. We hope that this study can provide

guidelines for designing next-generation media servers.

Our work can be further explored in at least two direc-
tions. First, we realize that the MEMS storage could be

simultaneously used for buffering and for caching popular
streams. For instance, when the popularity distribution is

not skewed sufficiently to efficiently utilize the MEMS stor-

age as a cache, part of the MEMS storage can be used as a
buffering medium to increase the disk throughput. Second 18]

this work can be extended to include formulating intelligent

placement policies for data on the MEMS device so as to[19]
improve the access characteristics of these devices for mul-

timedia data.
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