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Abstract

The performance of streaming media servers has been
limited due to the dual requirements of high throughput and
low memory use. Although disk throughput has been enjoy-
ing a40% annual increase, slower improvements in disk ac-
cess times necessitate the use of large DRAM buffers to im-
prove the overall streaming throughput. MEMS-based stor-
age is an exciting new technology that promises to bridge the
widening performance gap between DRAM and disk-drives
in the memory hierarchy. This paper explores the impact of
integrating these devices into the memory hierarchy on the
class of streaming media applications. We evaluate the use
of MEMS-based storage for buffering and caching stream-
ing data. We also show how a bank ofk MEMS devices
can be managed in either configuration and that they can
provide ak-fold improvement in both throughput and ac-
cess latency. An extensive analytical study shows that using
MEMS storage can reduce the buffering cost and improve
the throughput of streaming servers significantly.

1 Introduction

Applications such as news or video on demand, distance
learning, scientific visualization, and immersive virtual real-
ity must store, maintain, and retrieve large volumes of real-
time data. These data are collectively referred to ascontinu-
ousor streamingmedia. They require storage architectures
that can accommodate their real-time delivery constraints
as well as their large sizes. Economical delivery of these
data requires that such architectures also provide high disk
throughput and minimize memory usage.

Even after the long reign of Moore’s Law, the basic mem-
ory hierarchy in computer systems has not changed sig-
nificantly. At the non-volatile end, magnetic disks have
managed to survive as the most cost-effective mass storage
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medium, and there are no alternative technologies which
show promise for replacing them in the next decade [20].
Disk access times, however, are improving at the rate of only
10% per year. For more than a decade they have continued
to lag behind the annual disk throughput increase of40%
and capacity increase of60% [20]. Due to the increasing
gap between the improvements in disk bandwidth and disk
access times (both seek time and rotational delay), achieving
high disk throughput necessitates accessing the disk drive in
larger chunks. This translates to a rapidly-increasing DRAM
buffering cost. A large DRAM buffer is especially necessary
for servers which stream to a large number of clients. Mul-
timedia server architects have tried to cope with this perfor-
mance gap by proposing solutions ranging from simple re-
source trade-offs [13, 25] to more complex ones that require
substantial engineering effort [2, 7, 10].

Micro-electro-mechanical-systems (MEMS) based stor-
age is an emerging technology that promises to bridge the
performance gap between magnetic disks and DRAM [1].
MEMS devices are predicted to be an order of magnitude
cheaper than DRAM, while offering an order of magnitude
faster access times than disk drives [16]. These devices of-
fer a unique low-cost solution for streaming applications. In
this study, we propose an analytical framework to evaluate
the effective use of MEMS devices in a streaming media
server. Specifically, we derive analytical models for study-
ing two MEMS configurations,using MEMS storage as a
buffer between DRAM and disk, andusing MEMS storage
as a cache.

• MEMS buffer. When MEMS storage is used as a speed-
matching buffer between the disk drive and DRAM, all
data retrieved from the disk to DRAM are first retrieved
into the MEMS buffer and then transferred to DRAM.

• MEMS cache. When MEMS storage is used as a cache,
it stores popular multimedia streams in their entirety.

MEMS-based storage provides access characteristics su-
perior to those of disk drives, thus reducing the DRAM
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buffering requirement. In addition, being a magnitude
cheaper than DRAM, MEMS devices can improve the disk
throughput by providing low-cost buffering for large disk
IOs. Caching popular content on MEMS storage can also
reduce the DRAM buffer requirement and improve the total
streaming throughput of the media server. At first glance,
the issues involved in placing MEMS storage between the
DRAM and the disk-drive, either as a buffer or as a cache,
seem straightforward enough. However, the real-time IO re-
quirement of the media data and the mismatch between the
transfer rates of disk and DRAM make some MEMS stor-
age configurations unfeasible or counter-productive. Our
extensive analytical and empirical studies reveal the follow-
ing design principles: (i) when used to buffer streaming data,
MEMS storage must be used to buffer only low and medium
bit-rate streams, (ii) When the streaming content has a non-
uniform popularity distribution, MEMS-based disk caching
can improve the server throughput regardless of the bit-rate
of the streams serviced. We shall examine these principles
further in the experimental section.

This work has led to several research contributions. Pri-
marily, it takes the first step toward understanding the role of
MEMS-based storage devices in next-generation streaming
multimedia servers. In particular, we make the following
contributions:

1. We propose using MEMS devices in two possible con-
figurations:MEMS as a bufferandMEMS as a cache. We
also show how a bank ofk MEMS devices can be managed
in either configuration and that they can provide ak-fold
improvement in both throughput and access latency.

2. We develop an analytical framework for guarantee-
ing real-time constraints in the presence of the additional
MEMS-based storage layer in the memory hierarchy.

3. Based on our evaluation, we provide guidelines for de-
signing the next generation of streaming media servers us-
ing MEMS devices.
The rest of this paper is organized as follows: Section 2

briefly explains one possible architecture for the MEMS
storage and presents current predictions for future DRAM,
disk, and MEMS storage characteristics. Section 3 intro-
duces MEMS storage as an intermediate buffer as well as a
cache for streaming data. In Section 4 we present a quanti-
tative model for analyzing the two MEMS storage configu-
rations. Section 5 presents a performance evaluation of the
MEMS-based streaming server architecture based on our an-
alytical model. Section 6 presents related research. In Sec-
tion 7, we suggest directions for future work.

2 MEMS-based Storage

Researchers at the Carnegie Mellon University have pro-
posed one possible architecture for a MEMS-based storage

device [5, 16] depicted in Figure 1. They propose MEMS
devices which would be fabricated on-chip, but would use a
spring-mounted magnetic media sled as a storage medium.
The media sled is placed above a two-dimensional array of
micro-electro-mechanical read/write heads (tips). Actuators
move the media sled above the array of fixed tips along both
the X and Y dimensions. Moving along the Y dimension at
a constant velocity enables the tips to concurrently access
data stored on the media sled. Using a large number of tips
(of the order of thousands) concurrently, such a device can
deliver high data throughput. The light-weight media sled of
the MEMS device can be moved and positioned much faster
than bulkier disk servo-mechanisms, thus cutting down ac-
cess times by an order of magnitude.

Media accessed
by a single tip

Electronics

Tip

Media SledX Actuator

Y Actuator

Figure 1. MEMS-based storage architecture.

Year DRAM MEMS Disk
Capacity [GB] 0.5 n/a 100
Access time [ms] 0.05 n/a 1− 11

2002 Bandwidth [MB/s] 2, 000 n/a 30− 55
Cost/GB $200 n/a $2
Cost/device $50- $200 n/a $100- $300
Capacity [GB] 5 10 1, 000
Access time [ms] 0.03 0.4− 1 0.75− 7

2007 Bandwidth [MB/s] 10, 000 320 170− 300
Cost/GB $20 $1 $0.2
Cost/device $50- $200 $10 $100- $300

Table 1. Storage media characteristics.

Table 1 summarizes important characteristics of different
storage media for the year 2002 and the predicted values for
the year 2007. The MEMS device projections are borrowed
from [16]; the disk drive projections are based on [20]; and
DRAM predictions are based on [12].

Typically, most storage media are optimized for sequen-
tial access. For instance, the maximum DRAM through-
put is achieved when data is accessed in sequential chunks,
about the size of the largest cache block. These are typically
tens to hundreds of bytes. However, both magnetic disks and
MEMS-based storage devices (MEMS) have much longer
access times than DRAM. These devices have to be accessed
in much larger chunks to mask the access overheads, the
MEMS device being the faster of the two by an order of
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magnitude. Figure 2 shows the effective throughput of the
disk drive and the MEMS device depending on the average
IO sizes on these devices. In Figure 2 we use the maximum
access times for servicing MEMS IO requests, and the aver-
age access times for disk IO requests.
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Figure 2. Effective device throughputs.

3 MEMS-based Streaming
Streaming data is characterized by the dual requirements

of guaranteed-rate IO and high throughput. To service
multiple streams, the disk-drive bandwidth is time-shared
among the streams. However, this time-sharing degrades
disk throughput. Any system designed for servicing stream-
ing data must address the inherent trade-off between disk
throughput and data buffering requirements.

In this paper, we adopt the time-cycle based scheduling
model [13] for scheduling continuous media streams. In this
model, time is split into basic units called IO cycles. In each
IO cycle, the disk performs exactly one IO operation for
each media stream. Given the stream bit-rates, theIO cy-
cle timeis the amount of time required to transfer sufficient
amount of data for each stream so as to sustain jitter-free
playback. The IO cycle time depends on the system config-
uration as well as the number and type of streams requested.
To service multiple streams, the IO scheduler services the
streams in the same order in each time-cycle. Careful man-
agement of data buffers and precise scheduling [2] can re-
duce the total amount of buffering required to the amount of
data read in one time-cycle.

In traditional multimedia servers, the buffering require-
ment is addressed using the system memory (DRAM).
MEMS-based storage devices can be used to offload part of
the DRAM buffering requirement. They can also be used as
caches to provide faster access to multimedia content. Fig-
ure 3 illustrates the new system architecture that includes the
MEMS device in the storage hierarchy. The MEMS storage
module can consist of multiple MEMS devices to provide
greater storage capacity and throughput. The MEMS device

MEMS

Drive
DRAM

IO BUS
Disk

Figure 3. The MEMS Architecture

is accessed through the IO bus. It can be envisioned as part
of the disk drive or as an independent device. In either case,
IOs can be scheduled on the MEMS device as well as on
the disk drive independently. Similar to disk caches found
on current-day disk drives, we assume that MEMS storage
devices would also include on-device caches. In what fol-
lows, we present two possible scenarios in which such an
architecture can be used to improve the performance of a
multimedia system.

3.1 MEMS Multimedia Buffer
Using MEMS storage as an intermediate buffer between

the disk and DRAM enables the disk drive to be better uti-
lized. At a fraction of the cost of DRAM, MEMS stor-
age can provide a large amount of buffering required for
achieving high disk utilization (see Figure 2). Although
DRAM buffering cannot be completely eliminated, the low
access latency of MEMS storage provides high throughput
with significantly lesser DRAM buffering requirement. The
MEMS device can thus act as a speed-matching buffer be-
tween the disk drive and the system memory, in effect ad-
dressing the disk utilization and data buffering trade-off.

Using MEMS storage as an intermediate buffer implies
that the MEMS-based device must handle both disk and
DRAM data traffic simultaneously. To understand the ser-
vice model, let us assume that the multimedia streams being
serviced are all read streams, so that stream data read from
the disk drive is buffered temporarily in the MEMS device
before it is read into the DRAM. This model can be easily
extended to address write streams.

To service buffered data from the MEMS device, we use
the time-cycle-based service model previously proposed for
disk drives. Data is retrieved in cycles into the DRAM such
that no individual stream experiences data underflow at the
DRAM. At the same time, the data read from the disk drive
must be written to the MEMS device. The disk IO scheduler
controls the read operations at the disk drive. The MEMS IO
scheduler controls the write operations for data read from
the disk as well as read operations into the DRAM. In the
steady state, the amount of data being written to the MEMS
device is equal to the amount read from it. The MEMS band-
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width is thus split equally among read and write operations.
Thus, although the MEMS device can help improve disk uti-
lization, we must realize that to do so, it must operate at
twice the throughput of the disk drive. In order to mini-
mize buffering requirements between the disk drive and the
MEMS storage, the disk and the MEMS IO schedulers must
therefore co-operate.

The MEMS buffer could consist of multiple physical
MEMS devices to provide greater buffering capacity and
throughput. As we shall see in Section 5, a bank of MEMS
devices may be required to buffer IOs for a single disk. The
(predicted) low entry-cost of these devices makes such con-
figurations practical. We now present a feasible IO schedule
that maintains real-time guarantees, when a single MEMS
device is used for buffering. We then extend our methodol-
ogy to work with a bank of MEMS devices.

3.1.1 IO Scheduling: Single MEMS
We now present one possible IO scheduler which guarantees
real-time data retrieval from the disk using a single-device
MEMS buffer. The MEMS IO scheduler services IOs on
the MEMS device in rounds orIO cycles. In each IO cycle,
the MEMS device services exactly one DRAM transfer for
each of theN streams serviced by the system. The amount
of data read for each stream is sufficient to sustain playback
before the next IO for the stream is performed. Further, the
MEMS device also servicesM transfers (M < N ) from the
disk in each IO cycle. In the steady state, the total amount of
data transferred from the disk to the MEMS buffer is equal
to that transferred from the MEMS buffer to DRAM. Thus,
there exist two distinct IO cycles, one for the disk (thedisk
IO cycle, during whichN IOs are performed on the disk-
drive) and the other for the MEMS buffer (theMEMS IO
cycle, during whichN IO transfers occur from the MEMS
buffer to the DRAM).
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Figure 4. MEMS IO Scheduling.

Figure 4 describes the data transfer operations occurring
during a single MEMS IO cycle. The X-axis is the time axis;
the three horizontal lines depict the activity at the disk head,

the MEMS tips, and the DRAM, respectively. In this exam-
ple, the system services10 streams (N = 10). The lightly
shaded regions depict data-transfer from the disk drive into
the MEMS device. The dark regions depict data-transfer be-
tween the MEMS device and the DRAM. The MEMS device
performsN small IO transfers between MEMS and DRAM,
andM large disk transfers in each MEMS IO cycle.

3.1.2 IO Scheduling: Multiple MEMS

According to certain predictions [16, 22], a single MEMS
device might not be able to support twice the bandwidth of
future disk drives. In such cases, a bank ofk MEMS de-
vices would provide a higher aggregate bandwidth. Using
k MEMS devices for buffering disk IOs raises interesting
questions.How should stream data be split across these de-
vices? What constitutes an IO cycle at the MEMS buffer?
To what uses can we put any spare storage or bandwidth at
the MEMS devices?We answer each question in turn.

Placing stream data:Buffered data can be placed in one
of two ways: stripe the buffered data for each stream across
the MEMS bank or buffer each stream on a single MEMS
device. Striping data for each stream across thek MEMS
devices can be accomplished by splitting each disk IO into
k parts and routing each part to a different MEMS device.
The size of disk-side IOs performed on the MEMS device
is reduced by a factor ofk. Since a smaller average IO size
decreases the MEMS device throughput, striping can be un-
desirable.

Instead of striping the data, the set of streams could be
split across the MEMS bank. Each stream would thus be
buffered on a single MEMS device. This would preserve the
size of disk-side IO transfers. To achieve such a split, the
disk IOs are routed to the MEMS devices in a round-robin
fashion. Everykth disk IO is routed to the same MEMS
device. Routing each IO to a single MEMS device improves
the MEMS throughput and is thus preferable to striping each
disk IO across the MEMS bank.
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Figure 5. IO Scheduling for a MEMS bank.
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IO Cycle for a k-device MEMS bank: Routing each
disk IO to a single MEMS device splits the set of streams
across thek MEMS devices in the bank. The notion ofIO
cyclefor the MEMS bank can be defined in the same man-
ner as that for a single device MEMS buffer. It is the time
required to perform exactly one DRAM transfer for each of
theN streams serviced by the system. For the sake of sim-
plicity, let us assume that each MEMS device servicesN

k
streams. Figure 5 depicts the operations during an IO cycle
at each MEMS device. The number of streams,N , is45 and
the number of MEMS devices in the bank isk = 3. For each
disk IO,15 DRAM transfers take place. The amount of data
read from and written into the MEMS device is the same in
the steady state.

Using the spare MEMS storage and bandwidth:De-
pending on the number and type of streams serviced and
the capacity of the MEMS device bank, spare storage and/or
bandwidth might be available at the MEMS device. If addi-
tional storage is available at the MEMS device, the operating
system could use it for other non-real-time data: as a persis-
tent write buffer, as a cache for read data with temporal or
spatial locality, or as a disk prefetch buffer. The MEMS
storage can also be used to cache entire streams, as we shall
explore next. Spare bandwidth, if available, can be used for
non-real-time traffic.

3.2 MEMS Multimedia Cache

Multimedia content usually has a well-defined popularity
distribution, and some content are accessed more frequently
than others. Besides using MEMS storage as a buffer for
streaming multimedia data from the disk drive, we can also
use a MEMS storage device as a cache for popular multi-
media content. Since the MEMS device offers low latency
data access at throughput levels similar to those of the disk-
drive, storing popular content on a MEMS cache reduces the
buffering requirement for streaming data and hence DRAM
cost. By usingk MEMS devices, we can also use the ag-
gregate bandwidth of the MEMS cache for improving the
server throughput.

One significant difference between using a MEMS de-
vice as a cache and using it as a buffer is that with caching,
the MEMS cache behaves primarily as a read-only device.
The MEMS cache is updated only to account for changes in
stream popularity. This can be accomplished off-line, dur-
ing service down-time. To service streams from the cache,
we use time-cycle-based IO scheduling. Again, there exist
two distinct IO cycles, one for the streams serviced from the
disk-drive and the other for those serviced from the MEMS
cache. The performance of either device depends on the
available DRAM buffering and the number of streams ser-
viced from it.

When more than one MEMS device is used for caching,
the performance of the MEMS cache depends on the data

management policy used for the MEMS bank. With multiple
devices, we must ensure that the load on the MEMS devices
is balanced. In this regard, we can draw on research from
data management policies for disk arrays [3]. We now in-
vestigate two cache-management policies, representing two
classes of load balancing strategies, which ensure total load-
balance across the MEMS bank. These approaches make
different trade-offs to optimize for a sub-set of system con-
figurations. More sophisticated load-balancing strategies,
including hybrid approaches of the above, have been pro-
posed in literature [3, 15, 23, 24]. We investigate two sim-
ple, representative approaches as a first step.

3.2.1 Striped Cache-management
Using striped cache-management, each stream is bit- or
byte-striped across all thek MEMS devices. There is no
redundancy, and data for each stream is distributed in round-
robin fashion across the MEMS devices. To perform an IO
on the MEMS cache, all the devices access exactly the same
relative data location, in a lock-step fashion. The load is
thus perfectly balanced across the MEMS cache. The effec-
tive data transfer rate of the MEMS cache isk times that of
a single device. The effective access latency of the MEMS
cache is the same as that of a single device. IfNm streams
are serviced from the MEMS cache, the total number of seek
operations in an IO cycle isk · Nm. Using striped cache-
management, perfect load-balancing is achieved at the cost
of reduced access parallelism of the devices.

3.2.2 Replicated Cache-management
Usingreplicated cache-management, the cached streams are
replicated on thek MEMS devices. All the devices store ex-
actly the same content. To perform an IO on the MEMS
cache, any of thek devices can be accessed. If the number
of streams serviced from the MEMS cache isNm, then each
MEMS device services exactlyNm

k of the streams. Since
each MEMS device stores all the cached streams, such a
division is possible. The effective data transfer rate of the
MEMS cache isk times that of a single device. Operating
thek devices independently improves parallelism of access.
The total number of seek operations in an IO cycle is only
Nm as opposed tok ·Nm in striped cache-management. Us-
ing replicated cache-management, perfect load balancing is
achieved at the cost of reduced cache size due to data re-
dundancy. In Section 4.2, we further analyze the trade-offs
involved in each policy.

4 Quantitative Analysis

In this section we present a quantitative model to an-
alyze buffering requirements for systems supporting real-
time streaming applications using MEMS devices. We dis-
cuss two system configurations:
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• MEMS buffer. All data retrieved from the disk to
DRAM are first retrieved into the MEMS buffer and
then transferred to DRAM.

• MEMS cache. Selected data are cached on the MEMS
device. Requested data can be serviced either from the
disk-drive or the MEMS cache.

Parameter Description
N Number of continuous media streams
B̄ Average bit-rate of the streams serviced [B/s]
k Number of MEMS devices in system
Rdisk Data transfer rate from disk media[B/s]
Rmems Data transfer rate from MEMS media[B/s]
L̄disk Average latency for disk IO operations[s]
L̄mems Average latency for MEMS IO operations[s]
Cdram Unit DRAM cost[$/B]
Cmems Unit MEMS cost[$/B]
Sizemems MEMS capacity per device[B]
Sizedisk Disk capacity[B]
Sdisk−dram Average IO size from disk to DRAM[B]
Sdisk−mems Average IO size from disk to MEMS[B]
Smems−dram Average IO size from MEMS to DRAM[B]
Tdisk Disk IO cycle[s]
Tmems MEMS IO cycle[s]

Table 2. Parameter definitions.

To evaluate the effectiveness of MEMS-based buffering
and caching, we compare the system cost with and without
MEMS storage. LetCdram andCmems denote the unit cost
($/B) of DRAM and MEMS buffer, respectively. Further-
more, we use a per-device cost model for MEMS storage.
Thek MEMS devices costk ×Cmems × Sizemems even if
the system does not utilize all the available MEMS storage.
The proofs for the results presented in this section can be
found in [14].

4.1 MEMS Multimedia Buffer
Let Sdisk−dram denote the per-stream IO size from

disk to DRAM, Sdisk−mems from disk to MEMS, and
Smems−dram from MEMS to DRAM. Let k denote the
number of MEMS devices in the system. LetN denote the
number of streams in the system. The buffer cost with and
without the MEMS buffer is

COSTwithout mems = N × Cdram × Sdisk−dram (1)

COSTwith mems = k × Cmems × Sizemems +
N × Cdram × Smems−dram (2)

where k × Sizemems ≥ N × Sdisk−mems . Using
MEMS devices in a streaming system is cost effective only
if COSTwith mems < COSTwithout mems.

In order to calculate the system cost, we first calculate IO
sizes that guarantee the real-time streaming requirements.
We next compute disk and MEMS IO sizes given the fol-
lowing four input parameters:

• N : The number of streams that the server supports.

• B̄: The average bit-rate of theN streams.

• Rd: The data transfer rate of deviced. Rd is substituted
by Rdisk (disk transfer rate) orRmems (MEMS transfer
rate) depending on where the IO takes place.

• L̄d: The average latency of deviced in a time-cycle.L̄d

is substituted bȳLdisk (disk latency) orL̄mems (MEMS
latency) depending on where the IO takes place.L̄d also
depends on the scheduling policy employed to manage de-
viced.
In computing IO size, we make two assumptions that

are commonly used in modeling a media server. First, we
use time-cycle-based IO scheduling (Section 3). Second, to
simplify the analytical model, we assume all streams to be
in constant bit-rate (CBR).1 We summarize the parameters
used in this paper in Table 2.
Theorem 1. For a system which streams directly from the
disk to DRAM, the minimum size of per-stream DRAM
buffer required to satisfy real-time requirements is

Sdisk−dram =
N × L̄disk ×Rdisk × B̄

Rdisk −N × B̄
, (3)

where Rdisk > N × B̄.

Corollary 1. To stream directly from the MEMS device to
the DRAM, the minimum size of per-stream DRAM buffer
required to satisfy real-time requirements is

Smems−dram =
N × L̄mems ×Rmems × B̄

Rmems −N × B̄
, (4)

where Rmems > N × B̄.

Although Theorem 1 is well established [13], calculating IO
sizes is more complex in a system that uses MEMS as an
intermediate buffer between the disk and DRAM because
we must consider the real-time requirements between the
disk and MEMS as well as between the MEMS and DRAM.
Theorem 2.For a system which usesk MEMS devices as a
disk buffer, the minimum size of per-stream DRAM buffer
required to satisfy real-time requirements is

Smems−dram = B̄ × C × (1 + 2k−2
N )× Tdisk

Tdisk − C
, (5)

where C =
N × L̄mems ×Rmems

k ×Rmems − 2× (N + k − 1)× B̄
.

Tdisk is the largest value such that the following three
conditions (real-time requirement, storage requirement, and
scheduling requirement) are satisfied:

Tdisk ≥ N × L̄disk ×Rdisk

Rdisk −N × B̄
(6)

1VBR can be modeled by CBR plus some memory cushion for handling
bit-rate variability [8].
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2×N × Tdisk × B̄ ≤ k × Sizemems (7)
Tmems

Tdisk
=

M

N
, M < N, M ∈ Integer. (8)

Corollary 2. When N and M are divisible byk (or are
relatively large compared tok), k MEMS devices behave as
a single MEMS device with bothk times smaller average
latency andk times larger throughput.

4.2 MEMS Multimedia Cache
Although streaming data do not have temporal locality,

they are often characterized by a non-uniform popularity
distribution. Caching popular content in MEMS storage can
decrease the DRAM buffering requirement so that the sys-
tem can support more streams. Leth denote the hit-rate for
the MEMS cache. GivenN streams to service,n = N × h
of them are serviced from the MEMS cache, andN×(1−h)
streams are serviced from the disk. We can express the cost
of DRAM buffer and MEMS cache as

COSTwith mems−cache = k × Cmems × Sizemems +
h×N × Cdram × Smems−dram +

(1− h)×N × Cdram × Sdisk−dram. (9)

Using Theorem 1 we can calculateSdisk−dram as

Sdisk−dram =
(1− h)×N × L̄disk ×Rdisk × B̄

Rdisk − (1− h)×N × B̄
, (10)

where Rdisk > (1− h)×N × B̄.

In order to calculateh andSmems−dram, let us assume
that the popularity distribution of content is specified by
X : Y , whereX% of the streams are accessedY % of
the time. Let us assume that both popular (X%) and non-
popular streams (100%−X) are accessed uniformly in their
class. The capacity of the disk,Sizedisk, is the total storage
required for all the streams serviced by the system. Let the
capacity of a single MEMS device be denoted bySizemems.
Let the percentage of movies cached be denoted byp. Then
the cache hit ratio,h, can be expressed as

h =
{ p

X × Y
100% if X ≥ p,

Y
100% + p−X

100%−X × 100%−Y
100% otherwise.

(11)

If the MEMS cache contains a single MEMS device, then
p andSmems−dram (using Equation 4) are

p =
SIZEmems

SIZEdisk
;

Smems−dram =
n× L̄mems ×Rmems × B̄

Rmems − n× B̄

However, if the cache consists of more than one MEMS de-
vice, bothp andSmems−dram depend on the cache man-
agement policy used for accessing the MEMS cache. We
explore the two policies, namelystripedandreplicated, in-
troduced in Section 3.2.

4.2.1 Striped Cache Management
Theorem 3. For a server that employs the striped cache-
management policy across an array ofk MEMS devices for
servingn streams, the minimum size of per-stream DRAM
buffer required to satisfy real-time streaming requirements
is

Smems−dram =
n× L̄mems × (k ×Rmems)× B̄

(k ×Rmems)− n× B̄
, (12)

where k ×Rmems > n× B̄.

Corollary 3. A striped cache, consisting ofk MEMS de-
vices, behaves as a single MEMS cache withk times larger
throughput and unchanged access latency.

4.2.2 Replicated Cache Management
Theorem 4.For a server that employs the replicated cache-
management policy across an array ofk MEMS devices for
servingn streams, the minimum size of per-stream DRAM
buffer required to satisfy real-time streaming requirements
is

Smems−dram =
(n + k − 1) L̄mems

k (k ·Rmems)× B̄

(k ·Rmems)− (n + k − 1)× B̄

where k ·Rmems > (n + k − 1)× B̄. (13)

Corollary 4. When N is divisible by k (or is relatively
large compared tok), k replicated cache behaves as a sin-
gle MEMS device withk times larger throughput as well as
k times smaller average latency.

5 Experimental Evaluation

This section presents an experimental evaluation of a
streaming multimedia system equipped with MEMS stor-
age. We compare its performance to that of a system without
MEMS storage. We evaluate separately the performance of
the MEMS device when it is used to buffer streaming data
stored on the disk drive, and when it is used to cache popular
streams. The evaluation presented in this section is based on
the analytical model presented in Section 4.

Parameter FutureDisk G3 MEMS DRAM
RPM 20, 000 – –
Max. bandwidth [MB/s] 300 320 10, 000
Average seek [ms] 2.8 – –
Full stroke seek [ms] 7.0 0.45 –
X settle time [ms] – 0.14 –
Capacity per device [GB] 5 10 1,000
Cost/GB [$] 0.2 1 20
Cost/device [$] 100–300 10 50–200

Table 3. Performance characteristics of stor-
age devices in the year 2007.

7
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Figure 6. DRAM requirement for various media types.

To model the performance of the MEMS device, we
closely followed one such model proposed by researchers
at Carnegie Mellon University. The work in [16] describes
their model comprehensively. For our experiments, we use
the “3rd Generation” (G3) MEMS device model proposed
in [16]. We obtained predictions for disk-drive and DRAM
performance by using projections on current-day devices
produced by Maxtor [9] and Rambus [12], respectively.
These are summarized in Table 3.

In our experiments the average bit-rate of streams,B̄,
was varied within the range of10KB/s to10MB/s. Since the
maximum bandwidth of the FutureDisk,Rdisk, is300MB/s,
it can support tens of high-definition streams at a few
megabytes per second each, more than a hundred com-
pressed MPEG2 (DVD quality) streams at1MB/s, or a thou-
sand DivX (MPEG4) streams at100KB/s, or even tens of
thousands of MP3 audio at a bit-rate of10KB/s. To min-
imize the mis-prediction of seek-access characteristics for
the MEMS device, we assume that MEMS accesses,L̄mems,
always experience the maximum device latency. We use
scheduler-determined latency values,L̄disk, for disk ac-
cesses. The disk IO scheduler uses elevator scheduling to
optimize for disk utilization.

5.1 MEMS Multimedia Buffer

As mentioned in Section 3, using MEMS storage to
buffer streaming data requires that it supports twice the
streaming bandwidth of the disk-drive. In our experi-
ments, we used at least two G3 MEMS devices for buffer-
ing the streaming data, which provided a maximum aggre-
gate MEMS throughput of640 MB/s. To evaluate the per-
formance of the MEMS multimedia buffer, our experiments
aimed to determine the reduction in DRAM requirement as
well as overall system cost due to the addition of MEMS
storage. In addition, we also determined the sensitivity of
the above metrics to variations in MEMS device character-
istics.

Theorems 1 and 2 presented in Section 4 define the rela-
tionship between the system parameters. To study the sensi-
tivity of our evaluation to MEMS device characteristics, we
introduce thelatency ratio, L̄disk

L̄mems
, as a tunable parameter.

Latency ratio: We define thelatency ratioas the ratio of the
average disk access latency to the maximum MEMS access
latency. We varied the latency ratio within the range1 to 10.
The value for this parameter is around5 for the FutureDisk
and the G3 MEMS device listed in Table 3.

For performance evaluation, we conducted three exper-
iments. In the first two experiments, we assumed that
the maximum amount of DRAM and MEMS storage was
unlimited. We also used a cost-per-byte price model for
MEMS storage. These relaxations allowed us to observe
the relationship between the system parameters. In the third
experiment, we performed a case-study using an “off-the-
shelf” system which could be developed by the year 2007.
The available buffering on this system is limited, and its size
is based on current trends in server system configurations.

5.1.1 Reduction in DRAM requirement
In Figure 6, we vary the number of streams,N , and the av-
erage stream bit-rate,̄B. We plot the DRAM requirement
on the Y-axis. The X and Y axes are drawn to logarithmic
scale. The total buffering requirement increases rapidly with
the number of streams (according to Equations 1 and 4). For
a fixed system throughput, the buffering requirement is thus
much larger for smaller bit-rates than for larger ones. In the
absence of a MEMS buffer, the DRAM requirement for a
fully utilized disk ranges from1GB for 10MB/s streams to
1TB for 10KB/s streams. With a MEMS buffer, the DRAM
requirement is reduced by an order of magnitude to support
a given system throughput.

5.1.2 Reduction in Cost
Addition of a MEMS buffer reduces DRAM requirement.
However, we must take the total system cost into account
before reaching a conclusion about the benefits. To calculate
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Figure 7. Percentage cost reduction.

the cost of buffering, we use cost predictions as presented in
Table 3. According to the predictions, MEMS buffering is
20 times cheaper than DRAM buffering per-byte.
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Figure 8. Reduction in the total buffering cost.

Figure 8 shows the reduction in total buffering cost, in-
cluding the additional cost of the MEMS buffer. In spite of
the addition of the MEMS buffer, the total cost of buffer-
ing is reduced for all media types. Cost savings range from
tens of dollars for high bit-rate streams to tens of thousands
of dollars for lower bit-rates. These cost savings are almost
directly proportional to the DRAM reductions presented in
Figure 6, since the fractional cost-addition due to the MEMS
storage is negligible. This curve also shows that using a
MEMS buffer for streaming large bit-rates does not offer a
significant reduction in the buffering cost. Indeed, for large
bit-rates, even DRAM buffering is sufficient to achieve high
disk utilization. Upon calculation, we found that the cost-
reduction ranges between80% and90% depending on the
number of streams,N , and their average bit-rates,B̄.

5.1.3 A Parameter Sensitivity Study
We now present a hypothetical off-the-shelf system which
could be developed in the future. We determine the sensi-
tivity of cost-reductions to unpredictable trend changes in
device characteristics by varying thelatency-ratio.2

In our earlier experiments, we assumed that the system
could use an unlimited amount of DRAM and/or MEMS
storage. However, a system with terabytes of DRAM and/or
buffering would be prohibitively expensive. In the follow-
ing experiment, we restricted the system configuration to an
off-the-shelf system projected for the year2007 (Table 3).
The maximum DRAM size is restricted to5GB and20GB
of MEMS buffering is used by adding two MEMS devices.
The cost of the MEMS buffer is$20, thereby restricting the
cost-savings to a maximum of80%.

Figure 7(a) depicts the percentage reduction in the buffer-
ing cost for different average stream bit-rates when the la-
tency ratio is varied. As the latency-ratio is increased,
the MEMS device can deliver higher throughputs with less
buffering. As a result, the buffering cost is reduced. When
the average bit-rate is increased, the performance of both
the disk drive and the MEMS device improves. The differ-
ential improvement in throughput for the MEMS device is
greater. However, beyond a certain average bit-rate (1MB/s
in this case), the DRAM requirement in the absence of the
MEMS buffer is small, and the available5GB DRAM buffer
is under-utilized even without the MEMS buffer. In the ab-
sence of a MEMS buffer, the DRAM requirement for the
10MB/s bit-rate range is approximately1.5GB, thereby lim-
iting the cost-reduction to only30%.

In Figure 7(b), contour lines on the XY-plane depict the
regions in which the percentages of reduction in total buffer-

2We also investigated the sensitivity of the MEMS buffer performance
to the cost and bandwidth values. Our conclusion (that MEMS buffering
is effective for low and medium bit-rate traffic) holds true as long as the
MEMS device is an order of magnitude cheaper than DRAM and provides
streaming bandwidths comparable to or greater than those of disk-drives.
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Figure 9. MEMS cache performance.

ing costs are25%, 50%, and75%. The MEMS buffer is
cost-effective almost over the entire parameter space, with
at least a50% to 75% reduction in the total buffering cost.

5.2 MEMS Multimedia Cache

When streaming content has a non-uniform access proba-
bility, then a MEMS cache for popular streams can improve
the performance of a multimedia server as analyzed in Sec-
tion 4. To measure the performance of the MEMS cache, we
calculated the improvement in the server throughput (num-
ber of additional streams serviced) using a MEMS cache by
fixing the total cost of the system. The additional cost of
using a MEMS cache is reflected by a reduced amount of
available DRAM buffering. We evaluated the performance
of the MEMS cache using the two cache-management poli-
cies described in Section 3:stripedandreplicated.

The number of streams serviced from the MEMS device
depends on the number of cache hits (it follows Equation 9).
In our experiments, we assumed that if a stream was found
in the cache, it would be serviced only from the cache3.

The performance of the MEMS cache depends on four
parameters: the popularity distribution, the total system
cost, the average stream bit-rate, and the size of the MEMS
bank. To evaluate the impact of these parameters, we con-
ducted the following experiment. We fixed the cost of the
system and varied the popularity distribution to determine
the server throughput with and without a MEMS cache.
Each MEMS caching device that we added reduced the

3It can be shown that the performance of the cache can be further en-
hanced by off-loading the servicing of some popular streams to the disk
drive if the disk is under-utilized. We leave this study for future work.

amount of DRAM buffering available by500MB in order
to keep the cost invariant. The popularity distribution fol-
lows X:Y, whereX% of the streams are accessed Y% of
the time. We also assumed that allX% of the streams were
equally popular. Similarly, we assumed that the remaining
(100-X)% of the streams were equally unpopular. We con-
ducted the same experiment for three different values of the
total buffering cost:$50, $100, and$200. At these costs, the
numbers of MEMS devices,k, used for caching are chosen
as1, 2, and4 respectively. The entire experiment was per-
formed for two different average stream bit-rates:10KB/s,
and1MB/s.

5.2.1 Effect of popularity distribution
Figure 9(a) compares the performance of the two cache-
management policies:stripedandreplicated, against a sys-
tem without a MEMS cache. The X-axis represents the
popularity distribution and the Y-axis represents the server
throughput in terms of the number of streams serviced. The
average stream bit-rate is fixed at10KB/s. A uniform pop-
ularity distribution is denoted by the point 50:50 along the
X-axis. Whenk = 1, the replicated and striped caching
is equivalent. For skewed popularity distributions of 1:99,
5:95, and 10:90, both cache management policies outper-
form the system without the MEMS cache. However, when
the popularity distribution leans toward the uniform side, the
MEMS caching is not cost-effective. The MEMS cache is
able to store only a small fraction of the popular content,
thereby failing to offset its cost.

We can also compare the relative performance of the
two cache-management policies. When the popularity dis-
tribution is greatly skewed (1:99), the replicated cache-
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management policy supports the maximum number of
streams. Since all the popular streams are available on the
cache regardless of which policy is used, replication out-
performs striping by offering much lower average access la-
tencies to the MEMS cache. This is not the case for more
uniform popularity distributions, wherein striping can cache
more popular content than replication can.

5.2.2 Effect of varying the total cost

If the cost of the system is flexible, a system designer
must know the size of the MEMS cache and DRAM buffer
which provides the best server performance. Caching im-
proves system performance when the number of MEMS de-
vices is large enough to cache a majority of the popular
movies. More MEMS devices can be used for caching when
the available budget for buffering and caching is sufficient.
The greater the available budget, the bigger the range of
popularity distributions wherein the MEMS cache is cost-
effective. For instance, in Figure 9(a), with a$50 budget,
the MEMS cache (using one MEMS device) is cost-effective
only within the popularity range of 1:99 to 5:95. With a
higher budget ($200), the MEMS cache with four devices is
cost-effective over a greater popularity range, 1:99 to 20:80.

5.2.3 Effect of varying the average stream bit-rate

Unlike the MEMS buffer, the performance improvement due
to the MEMS cache is almost independent of the bit-rate
of the streams serviced. Figures 9(a) and (b) show this be-
havior. Regardless of the bit-rate, addition of one or more
MEMS devices increases the total streaming capacity of the
server. An interesting behavior that depends on the bit-rate
occurs in the case without the MEMS cache. In Figure 9(b),
the additional improvement for buffering costs of$100 and
$200 are negligible. For large bit-rates, even a small amount
of buffering is sufficient for utilizing the disk throughput.

5.2.4 Effect of varying the number of MEMS devices
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Figure 10. Varying the size of the MEMS cache.

Figure 10 shows the effect of varying the size of the
MEMS cache,k, on the improvement in the server through-
put. Striped cache-management policy is used for this ex-
periment. The total cost of buffering and caching with and
without the MEMS cache is fixed at$100 and the system
serves an average bit-rate of100KB/s. Each MEMS device
can cache1% of the content. Ask is increased, the size and
throughput of the MEMS cache also increase. However, to
keep the total cost invariant, the available DRAM buffer size
decreases. Hence, for each popularity distribution, there ex-
ists a unique optimal size for the MEMS bank. When the
popularity distribution is uniform, represented by 50:50, the
MEMS cache always degrades performance. For skewed
popularity distributions (1:99, 5:95, and 10:90), the MEMS
cache improves the server throughput by as much as2.4X.

6 Related Work
Multimedia workloads fall into two main categories: (1)

best-effortand (2)real-time. Thebest-effortclass of multi-
media data usually displays spatial and/or temporal locality
attributes. Traditional caching policies [18] are well suited
for such applications. The work of [16] shows that including
a MEMS-based cache in the storage hierarchy can improve
I/O response time by up to3.5X for best-effort data. The
focus of this work is to examine if such an addition can also
improve the performance of the real-time class of multime-
dia data.

To service real-time disk IOs, two classes of scheduling
algorithms have been proposed.Quality Proportion Multi-
Subscriber Servicing(QPMS ortime-cyclebased schedul-
ing) [13] and theEarliest Deadline First (EDF)[4] are rep-
resentative scheduling algorithms. Several improvements to
these algorithms have been since investigated [2, 21, 10, 17].
In this paper, we built upon the time-cycle model [13] for
scheduling continuous media on MEMS devices.

Scheduling multimedia streams on ak-device MEMS
bank is similar to scheduling streams on a disk array. How-
ever, using a MEMS bank as a disk buffer must consider the
real-time requirements between the disk and MEMS storage
as well as between MEMS storage and DRAM. On the other
hand, disk load balancing policies [3, 15, 23, 24] are directly
applicable to a MEMS bank when it is used as a cache. We
investigated two representative policies from previous work
on disk arrays for a MEMS bank.

7 Conclusions and Future Work
We have investigated the possibility of using MEMS stor-

age for buffering and caching streaming multimedia content.
Summarizing our findings, MEMS storage can improve the
performance of streaming media servers by providing low-
access latency and high throughput for accessing streaming
data. We propose using MEMS storage in two possible con-
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figurations:MEMS as a multimedia bufferandMEMS as a
multimedia cache. We have developed an analytical frame-
work for evaluating each of these configurations while using
either a single MEMS device or ak-device MEMS bank.
Based on our analytical study we have provided the fol-
lowing design guidelines: (i) for low and medium bit-rate
streams, using MEMS storage as buffer reduces the cost of
designing server systems by as much as an order of mag-
nitude, (ii) when the popularity distribution is non-uniform,
the server throughput can be improved by caching data in the
MEMS device. The MEMS device improves access to pop-
ular content and also provides additional streaming band-
width, regardless of the stream bit-rates.

Although this is a somewhat speculative study, several
research and industry efforts [1, 6, 11, 19, 22] suggest that
commercially mass-produced MEMS storage devices are
only a few years away. Thus, it is necessary to start think-
ing now about the architectural impact of these devices on
current applications. We hope that this study can provide
guidelines for designing next-generation media servers.

Our work can be further explored in at least two direc-
tions. First, we realize that the MEMS storage could be
simultaneously used for buffering and for caching popular
streams. For instance, when the popularity distribution is
not skewed sufficiently to efficiently utilize the MEMS stor-
age as a cache, part of the MEMS storage can be used as a
buffering medium to increase the disk throughput. Second,
this work can be extended to include formulating intelligent
placement policies for data on the MEMS device so as to
improve the access characteristics of these devices for mul-
timedia data.

References

[1] L. R. Carley, G. R. Ganger, and D. Nagle. MEMS-based
Integrated-Circuit Mass-Storage systems.Communications
of the ACM, 43(11):73–80, November 2000.

[2] E. Chang and H. Garcia-Molina. Effective memory use in
a media server.Proceedings of the 23rd VLDB Conference,
pages 496–505, August 1997.

[3] A. L. Chervenak and D. A. Patterson. Choosing the best
storage system for video service.Proceedings of ACM Mul-
timedia 95, pages 109–118, November 1995.

[4] S. J. Daigle and J. K. Strosnider. Disk scheduling for multi-
media data streams.Proceedings of the IS&T/SPIE, February
1994.

[5] J. Grin, S. Schlosser, G. Ganger, and D. Nagle. Operating
systems management of mems-based storage devices.Pro-
ceedings of the 4th Symposium on Operating Systems Design
and Implementation, 2000.

[6] Kionix Inc. http://www.kionix.com/, June 2002.
[7] S.-H. Lee, K.-Y. Whang, Y.-S. Moon, and I.-Y. Song. Dy-

namic buffer allocation in Video-on-Demand systems.Pro-
ceedings of ACM SIGMOD International Conference on
Management of Data, pages 343–354, May 2001.

[8] D. Makaroff, G. Neufeld, and N. Hutchinson. An evaluation
of VBR disk admission algorithms for continuous media file.
Proceedings of the 5th ACM Multimedia Conference, pages
143–154, 1997.

[9] Maxtor Corporation. Atlas 10KIII-U320 Product Datasheet.
[10] A. Molano, K. Juvva, and R. Rajkumar. Guaranteeing timing

constraints for disk accesses in RT-Mach.Real Time Systems
Symposium, 1997.

[11] Nanochip Inc.http://www.nanochip.com/, June 2002.
[12] Rambus Inc. RDRAM.http://www.rambus.com/, June 2002.
[13] P. V. Rangan, H. M. Vin, and S. Ramanathan. Designing

and on-demand multimedia service.IEEE Communications
Magazine, 30(7):56–65, July 1992.

[14] R. Rangaswami, Z. Dimitrijevic, E. Chang,
and K. E. Schauser. MEMS-based disk buffer
for streaming media servers (extended version).
http://www.cs.ucsb.edu/∼raju/mems-x.pdf, October 2002.

[15] J. R. Santos, R. R. Muntz, and B. A. Ribeiro-Neto. Compar-
ing random data allocation and data striping in multimedia
servers.Measurement and Modeling of Computer Systems,
pages 44–55, 2000.

[16] S. W. Schlosser, J. L. Griffin, D. Nagle, and G. R. Ganger.
Designing computer systems with MEMS-based storage.Ar-
chitectural Support for Programming Languages and Oper-
ating Systems, pages 1–12, 2000.

[17] C. Shahabi, S. Ghandeharizadeh, and S. Chaudhuri. On
scheduling atomic and composite multimedia objects.
IEEE Transactions on Knowledge and Data Engineering,
14(2):447–455, 2002.

[18] A. J. Smith. Cache memories.ACM Computing Surveys,
pages 473–530, September 1982.

[19] The New York Times. A new system for storing data.
http://www.nytimes.com/2002/06/11/science/physical/11DA-
TA.html, June 11 2002.

[20] D. A. Thompson and J. S. Best. The future of magnetic data
storage technology.IBM Journal of Research and Develop-
ment, 44(3), May 2000.

[21] T.-P. J. To and B. Hamidzadeh. Dynamic real-time schedul-
ing strategies for interactive continuous media servers.
ACM/Springer Multimedia Systems, 7(2):91–106, 1999.

[22] P. Vettiger, M. Despont, U. Drechsler, U. Durig, W. Haberle,
M. I. Lutwyche, H. E. Rothuizen, R. Stutz, R. Widmer, and
G. K. Binning. The “Millipede” - More than one thousand
tips for future AFM data storage.IBM Journal of Research
and Development, 44(3):323–340, 2000.

[23] J. Wolf, P. Yu, and H. Shachnai. Disk load balancing for
video-on-demand systems.ACM Multimedia Systems, De-
cember 1997.

[24] J. L. Wolf, P. S. Yu, and H. Shachnai. DASD Dancing:
A disk load balancing optimization scheme for video-on-
demand computer systems.Proceedings of the 1995 ACM
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, pages 157–166, 1995.

[25] P. Yu, M.-S. Chen, and D. Kandlur. Grouped sweeping
scheduling for DASD-based multimedia storage manage-
ment.Multimedia Systems, 1(1):99–109, January 1993.

12


