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This appendix presents a multiprocessor simulation environment, developed with the aim
to facilitate the researches of multiprocessor systems using widely available hardware
platforms. It comprises simulation tools, including both an execution-driven and a trace-
driven simulator, applicable for memory architecture studies of shared-address space
multiprocessors. It also includes a detailed model of a bus-based cache coherent
symmetrical multiprocessor system. The execution-driven simulator has a scheduling
algorithm specially optimized for speed. It can run parallel applications based on the
ANL programming paradigm, such as those found in the SPLASH-2 suite. The package
also includes an extension for writing object-oriented parallel applications in the Java-
like manner. Trace-driven simulation is based on a new concept of ideal traces. The trace-
driven simulator supports an original technique for abstraction of events that can
introduce timing dependencies in a trace, which in turn enables accurate simulation. Both
the execution-driven and the trace-driven simulator can work using the same memory
architecture simulators. The environment provides a simple general interface that allows
for the hardware lying underneath the simulated processors to be modeled using object
oriented programming. The package currently runs on PC platforms with Pentium or
newer, processor under the Linux operating system.

1. Introduction

Simulation plays a vital role in multiprocessor studies. In a variety of simulation
techniques, ranging from analytical modeling, which is often inadequate for being unable
to model complex multiprocessor interactions, to hardware prototyping, which is costly
and inflexible, software simulation has become relatively popular. Software simulation
has certain benefits that make it the dominant method for validating of proposed
architectures. Software simulators are easier to develop, they are less expensive than their
hardware counterparts and they are able to perform simulations with high level of
accuracy. They are also more flexible, allowing frequent changes of simulation
parameters and easy changes in the simulated architecture; this is significant because
details of the architecture under evaluation may frequently need readjusting, according to
the simulation results. In addition, as many simulations as there are available host
machines can be run simultaneously, which is important having in mind the number of
experiments that usually have to be carried out.



The world of software simulation comprehends several different simulation methods,
with a number of tools that follow them [1]. Certain trade-off between accuracy, speed,
flexibility, expense, portability, and ease of use is present in every simulation method.
These issues should be carefully considered when evaluating simulation techniques or
comparing them with each other.

A rapid development in the computer field can also change conditions that make some
method the best at one point of time, leading toward the introduction of new methods or
toward reemerging of some of the old ideas, so that occasional reevaluation of the
simulation techniques is necessary.

Currently, one of the most popular methods for simulation of multiprocessors [2] is
execution-driven simulation, due to its speed and accuracy. This method has been used in
a number of popular simulation tools. However, this method does not enable OS
references to be included in the simulation. Trace-driven simulation' is another method
that was widely used in the past, but was replaced by other techniques, mostly due to its
need for large disk space, problems with low disk transfer rates, and inability to
accurately simulate complex interprocess interactions. Yet, with rapid development of
technology, disks with capacities of 10GB or more and with transfer rates over 10MB/s
have become widely accessible, eliminating some of the drawbacks of this method.
Trace-driven simulation can be performed with traces that can contain memory
references from any source, including those from OS. Limes benefits from using both of
these two simulation methods.

Limes consists of two simulators (execution-driven and trace-driven simulator) and a
modifiable software representation of a realistic multiprocessor system. It currently runs
on PC platforms with Pentium or newer processor under the Linux operating system.

The following sections will describe Limes. In section 2 we explain the goals authors
sought to satisfy with Limes and other requirements set before it. In section 3 we discuss
the existing simulation tools and why is Limes different from them. Section 4 presents
Limes structure in details, including the execution-driven and trace-driven simulator and
their internal algorithms, and gives insight in one realistic memory simulator on an
example of the SMP system. Section 5 deals with Limes complexity and performance.
Section 6 gives the brief installation guide for installing and using Limes. Section 7 gives
some examples of projects where Limes was used. We conclude with section 8.

! The term trace-driven simulation sometimes pertains to all types of software simulations, meaning that a stream of memory
references constitutes a trace no matter where it comes from (from direct execution or from a file). Here, by execution-driven
simulation we mean that memory references come from direct execution of the instrumented code, and by trace-driven simulation that
memory references come from a file residing on a disk.



2. Goals and Demands

The nature of research that had to be performed, mainly involving shared-memory
multiprocessor studies, imposed a specific set of demands for a simulation environment
that would be considered appropriate.

First, it had to be executable on PC platforms, because of the estimated number of
experiments, the availability of such platforms in the environment, and the general
inaccessibility and lower number of high-end machines. Still, we wanted to keep a
possibility of porting the environment to other platforms by need.

Second, simulations were meant to be driven by realistic workload — the kind of
workload that would execute on the proposed hardware platform once it comes to life.
Character of the workload greatly influences the performance indicators, and using
inadequate workload can often be misleading.

For the execution-driven simulator we had to choose an appropriate set of applications it
can run, in order to give the simulation results the necessary validity. The SPLASH-2
application suite [3] was considered a preferred workload, since this set of benchmarks
became a de facto standard among the researchers involved in multiprocessor studies.
The trace-driven simulator was meant to be able to work with traces generated in our
environment, or elsewhere, by need. Having both of these two types of simulators would
enable simulations with a wide range of different workloads.

Third, the simulators were to deliver high level of accuracy, having in mind the character
of the studies, like simulations of bus-based cache coherence protocols [4].

Memory architectures that are studied often have certain similarities in their structure,
and the subtle differences that exist in their internal organization dictate not only that the
simulation be precise, in order to accurately measure the impact of these differences on
performance, but also that the simulator can be easily changed and adapted, so that little
effort is spent when changing details in their structure. These and other requirements
suggested the use of object oriented programming (OOP) techniques in the building of
the memory simulators. Writing a simulator using an OO language (such as C++) allows
great freedom to the writer of the simulator. The OO approach is also good when
considering the desired level of efficiency. Having in mind the number and the volume of
experiments that need to be performed and a need for frequent changes of simulation
parameters and memory architecture details, the advantages of the OOP approach become
fully visible.

Certain other conditions had to be fulfilled, such as the need to develop memory
simulators independently from the simulation kernel, which would give the opportunity
for development and testing of systems using parallel traces that come from different
sources (i.e., from direct execution, or from a trace residing on a disk). A part of the
simulator that handles the instrumentation of the application assembly code was also
meant to be written to be independent, which would allow us a possibility to change it
easily when switching to different platforms and thus requiring no other changes in the
rest of the environment in that process.



3. Existing Solutions

Majority of the existing simulation tools is developed for high-end multiprocessor
computers. If made for uniprocessor machines, it is almost exclusively for platforms with
RISC processors (mainly MIPSes and SPARCSs). Sophisticated tools like SimOS [6]
(runs on a MIPS based SGI multiprocessor) and SimICS [7] (runs on SPARC machines)
can simulate target architectures with a high level of accuracy using instruction set
emulation. They are able to simulate the execution of an entire realistic operating system
on a target machine, including complete simulation of the I/O subsystem. Beside the
operating system itself, all kinds of applications can be used as a realistic workload for
the simulations as well. The only thing that does not allow these tools to be considered
perfect, except that they work only on RISC platforms, is the speed of simulation, which
is still lower than in the case of the execution-driven simulation.

Tools like Tango [8] and its successor TangoLite [9], or CacheMire [10], are widely used
execution-driven simulators; but again, they only work on RISC platforms. They can not
ensure a satisfying level of accuracy if ported to a different hardware platform, such as a
CISC uniprocessor. Augmint [11] is the only such tool that does in fact run on a PC (with
a minor drawback of omitting 1APx86 string instructions and standard library routines
from instrumentation). Augmint has an advantage that it also runs under Windows NT, as
well as under Solaris operating system on SPARC machines (portability was not of
primary importance for Limes at the time, but we do consider porting it to other platforms
now). However, a trace-driven simulator is not included in the Augmint environment,
making it virtually impossible for OS references to be used as a workload in the
simulations. TangoLite and CacheMire are also lacking the possibility of trace-driven
simulation. They can only produce traces.

Having in mind insufficiencies of the existing tools regarding trace-driven simulation,
nonexistence of such tools for PC platforms and for CISCs in general (Augmint was also
just being developed at the time), and an awareness that every tool almost invariably
requires modifications in order to allow for particular effects to be simulated and
measuring techniques to be added, we felt that it would be worth of effort to invest the
time in developing a simulator that would be well suited for our research goals, rather
than to modify the existing tools. However, our demands were so widely set that the
environment we wanted to develop actually represented a general tool for simulations of
all shared-memory multiprocessor architectures.



4, Limes Structure

As already indicated, Limes simulation environment comprises both an execution-driven
and a trace-driven simulator. They enable a multiprocessor system to be simulated on a
uniprocessor host machine, in our case a PC based on Pentium or newer processor. The
simulator of the target system® is devised to be independent from the source of memory
references. This enables that both execution-driven and trace-driven simulator can use the
same memory system simulators. Memory/synchronization references come either from
the execution streams of the parallel application's threads or from a trace residing on a
disk, depending on the type of the simulation. This is shown in Figure 1. In the current
version of Limes (v2.0) only one thread can be assigned to one processor.

The environment also includes an extension of the ANL programming paradigm, so that

the users can develop, test, and use as workload object-oriented parallel applications
written in C++, but in a manner very similar to that employed by the Java programming
language. The whole system is rather small, built on top of Limes. It can be used on any
real machine that supports operations defined in ANL macros. The system implements
only two classes - threads and monitors, and programs written using them are more
readable and understandable than those using raw LOCKs and UNLOCKSs. This can be of
further value for researchers who may not be necessarily concerned with architecture
studies, but are primarily focused on investigating parallel algorithms.
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Figure 1. Simulation in the Limes environment

% The simulator of the target system actually simulates the behavior of the target memory system. Memory system, for example,
can include caches, TLBs, interconnection networks or global memory. Simulation of other parts of the system (like I/O system) is not
considered here. These are the reasons why this simulator is also called a memory system simulator.



4.1 Execution-Driven Simulator

Execution-driven simulation has two major parts. The first part is sfatic - building a
simulation executable. The second part is dynamic - executing the simulation. Building of
the simulation executable will be discussed first. Details of the simulation will be
described after that. At the end, it is explained how the optimized algorithm for thread
scheduling works.

Building an Executable

Applications that can be used to drive this simulator are like those from the SPLASH-2
suite, or more generally, those that use ANL (Argonne National Lab) macros for
expressing parallelism. Application assembly code (created by the compiler) is
instrumented with kernel call-outs at compile time; the source code does not require any
alterations for that. The simulator allows three levels of assembly code instrumentation,
depending on what type of events should be instrumented. Level O instruments only
synchronization primitives and user defined machine instructions (which are also possible
to define in Limes - for example prefetch, forward, etc.), level 1 instruments shared reads
and writes as well, and level 2 instruments all other memory references also, including
local ones. The simulation speed is reciprocal to the instrumentation level. Level O may
be appropriate for investigation of parallel algorithms, level 1 for shared-memory
architecture evaluations, and level 2 for simulations of caches.

Most C/C++ programs call standard library functions, and so do the parallel applications.
Limes by default instruments all standard library functions whose argument can be a
pointer, as they might read or write global memory without the control of the simulator.
Other library functions are not instrumented (which has virtually no impact on the
simulation accuracy), but can be, if it is needed; instrumentation tool is open for
additions. To avoid collision with library functions that are called by the simulator itself,
instrumented functions are prefixed, and a set of macros is defined that enables
redirection of calls to the instrumented functions instead of calling the originals.
TangoLite, for example, can only instrument those portions of the run-time libraries that
are not used by its own run-time system.

What makes the whole instrumentation process hard is that CISC (unlike RISC)’
instruction set is relatively complex, containing many instructions, which are frequently
non-uniform, so that many addressing combinations are possible.

> One important issue deserves attention here: knowing that the simulator will execute applications that are compiled for a CISC
processor, the question is whether the simulation results are bound to the behavior of such a processor. Can it be used for simulating
some future RISC multiprocessor, too? It is hard to give an exact answer, but our results show that it is possible. One real SPLASH-2
application (FFT) was executed on a MIPS R2000 DEC station and one on a Pentium based PC, with the same parameters (65536
complex doubles - a realistic problem size). The first simulation was performed using TangoLite, and the second one using Limes.
MIPS generated 18.393 millions of shared reads and 12.908 millions of shared writes, while Pentium generated 18.552 millions of
shared reads and 12.782 of shared writes during the execution of the application. The results indicate that for a real application, a
RISC such as MIPS R2000 generates approximately the same number of shared reads and writes as Pentium does (in both cases the
discrepancy is less then 1%). CISCs certainly generate more private references, but these references are generally of little importance
to multiprocessor studies; shared references is what determines the behavior and performance of multiprocessor systems.



The instrumented application code, simulator, and the memory system simulator are
finally compiled and linked together into a single executable. Process of compilation and
linking is controlled via a set of make files. If the application code is compiled with an
appropriate option, the compiler produces some debugging information that the
instrumentation tool can understand. If the application crashes, the simulator will use
those pieces of information and print the source line that the offending thread was
executing at that moment. It is worthy to know that the instrumentation does not prevent
the application to be debugged with a standard debugger.

Simulation

The whole simulation (application threads, simulator kernel, and memory simulator)
executes in the context of a single UNIX process. Basically, during the execution the
simulator scheduler acts like a layer between the parallel application and the simulated
memory system. Parallel application executes its native machine code, one thread at a
time, until it encounters an event of interest, such as a memory/synchronization reference
(read/write, lock acquire/release, or some user defined instruction). Then it gets
rescheduled, and the actual operation is deferred until its time stamp reaches the global
simulation time. The simulator is responsible for multiplexing threads and for scheduling
of their memory requests at proper times, in correct order. Context switching that occurs
immediately before an instruction of interest executes is realized through the replacement
of such instructions with kernel call-outs at compile time. The programming model
supported is the lightweight threads model (all processes share the address space with the
master process, except for the stack area, which is private for each process). Instruction
execution times are calculated at the end of each basic block (a basic block ends with a
branch, a label, or a memory reference). They are calculated by adding (a) the time
needed for an instruction with a memory reference to complete and (b) the execution
times of other instructions in the basic block. At compile time, each instruction is
associated with a number that represents the number of cycles it takes to execute before
the execution of the next instruction begins. For most instructions this number is one. By
changing these values, it is possible to model a faster or a slower processor. For example,
by decreasing their value we can roughly simulate a superpipeline processor. Simulation
time is expressed in processor cycles of the farget multiprocessor system.

If the simulation is ran with an appropriate option, during the simulation process the
simulator will produce a trace that contains references according to the level of
instrumentation, along with additional information that can be used to support accurate
trace-driven simulation; file format is open for the user to change it.

Optimized Scheduling Algorithm

Scheduling is necessary during the execution of the simulation to maintain correct
interleaving of memory activities of the application threads. The scheduling algorithm of
the simulator can substantially influence the performance of the simulation, because
scheduling activities are very frequent during the simulation. It is important to keep this
overhead as low as possible. Other sources of overhead are related to the instrumentation
process and to the memory system simulator.



Relative influence of the scheduling overhead on the simulation performance depends on
the amount of overhead introduced by the other two factors. Having in mind the
frequency of scheduling activities, it is certainly worth-wile to reduce it as much as
possible.

Accurate simulation can be accomplished if the memory simulator was called after every
cycle in the simulation, regardless of whether any requests exist in that cycle or not.
However, it would slow down the simulation significantly. Therefore, another, equally
correct approach is chosen: the scheduler calls the memory simulator in subsequent
simulated cycles only if there is at least one new request or at least one stalled thread; idle
cycles can be skipped. This optimization regards the execution stream of the non-global
instructions. The scheduling algorithm forces the continuous execution of non-global
instructions as much as possible, saving thus the time needed for frequent invocations of
the scheduler. The scheduler will call the memory simulator only if there are no threads
that can continue execution, because they all wait for a memory operation to complete.
An additional optimization regards shared writes. Threads are allowed to continue
execution without first waiting for shared writes to be completely simulated, deferring
that job as long as possible, and saving thus the time for frequent calls to the memory
simulator.

The scheduler works as follows: When a memory reference is met in a thread's execution
stream, the scheduler is invoked. Scheduler then does not invoke memory system
simulator right away, but instead checks if there are any threads that have become free to
continue execution, due to the fact that their memory requests have been satisfied in the
meanwhile. If there are such threads, then one of them with minimal time (there may be
more than one) is scheduled to continue its execution, and the scheduler will wait for
some other thread to call it again. If there are no threads that can continue execution, that
is, if all of them are waiting for some memory request to complete, then the scheduler
enters a loop where he calls the memory simulator in every cycle, until some thread gets
its request satisfied and enables it to continue execution. Such a scheduling algorithm
imposes that the memory simulator must be called with two parameters, fime now and
last _simulation time. Memory simulator then performs simulation between these two
moments. If time now>last simulation time it means that at last simulation time all
threads' requests were satisfied. However, it does not mean that the memory simulator
can just skip this time. This is due to the optimization that is performed when simulating
shared writes. When a shared write occurs, the memory simulator will return a safisfy
signal right away, even if the actual write was not simulated. This way a thread can
continue execution without delay. The actual shared write will be simulated later, upon
some other call to the simulator.

It depends on the memory simulator how many shared writes it can buffer before a
coming write must wait for the first one in the buffer to be actually simulated. This is the
reason why, upon every call, the memory simulator first checks if there are any
unfinished shared writes, and simulates them first if there are some. After the simulator
establishes that there are no more unsimulated events, it can freely skip the rest of the
time, all up to time _now.



4.2 Trace-Driven Simulator

Making a trace of some program's execution enables that a simulation can be split in two
phases - local work and a memory system simulation. Local work is not of importance for
multiprocessor studies. Trace-driven simulation performs only the memory simulation
part, while local work is already built in a trace via time stamps. If multiple simulations
are performed with the same trace then trace-driven simulation can potentially bring
speedup over multiple execution-driven simulation runs. But due to the disk transfer rate
limitations this is not always possible. Multiple runs can yield different results when
using execution-driven simulation if non-deterministic scheduling is performed. It is
possible even with static scheduling of workload. This is not the case with trace-driven
simulation. Trace-driven simulation also enables the use of traces that contain OS
references, while execution-driven simulations can not include OS references.

There is one more benefit when using traces as a workload. When comparison of two
architectures is needed, and their simulators are not working on identical platforms, or
even with the same simulators, trace-driven simulation enables completely accurate
comparison (only instruction interpretation method enables that too). Using execution-
driven simulation, for example on one RISC and one CISC platform, would give
completely different results for the same workload. Same traces, on the other hand,
contain same local work, so the comparison is reduced only to the memory systems that
are both equally simulated.

Limes' trace-driven simulator uses as input a trace generated by the execution-driven
simulator from the Limes environment, or from some other source. Limes is very flexible
concerning the trace file format. Its current version supports two formats: a text trace file
format, that can be viewed with a simple text editor, and a binary trace file format that is
significantly shorter and used for storing large traces. Other formats can be easily
implemented by altering the appropriate module of the trace-driven simulator (and the
module for trace generation of the execution-driven simulator, if traces are produced with
it). Every format, however, should be able to support abstraction by allowing certain
additional information for each reference to be stored in a trace.

Limes enables accurate trace-driven simulation, where possible, by using the method of
abstraction to eliminate timing dependencies. The technique used to support abstraction
in Limes is original. The simulator currently supports the abstraction of shared
reads/writes, locks/unlocks, user defined instructions (like prefetch, forward etc.),
barriers, and thread creation events. It is, of course, open for changes and ready to
support abstraction of other timing dependent operations, and of different
implementations of currently supported primitives.

Accuracy issues

The execution path of a multiprocessor workload depends on the ordering of events in a
system, which in turn depends on the machine memory system timings. When timing
dependencies are present, a small change to the memory system architecture can induce
numerous changes to the execution path of a program and cause inaccurate simulation.
This happens because trace itself usually does not contain any information about
program's execution path.



Those pieces of information are implicitly built in a trace via time stamps, and are valid
only while the memory system is not changed. If the memory system is changed, timings
will change as well, and time stamps will no longer contain correct information about the
program's execution path.

In [12] authors find that traditional traces are not adequate for accurate trace-driven
simulation and they propose infrinsic traces as an alternative (intrinsic trace consists of
the control-flow graph of the workload plus timing and address data for each basic
block). They argue that accurate trace-driven simulation without partial reexecution of
the program is possible only for so called graph-traceable programs (programs where all
addresses can be determined during simulation, based only on the information gathered
from the trace). In reality, the range of programs for which accurate trace-driven
simulation can be obtained at a reasonable cost reduces to a class of programs whose
threads have execution and data paths that can not be influenced by other threads. Most
applications comply to this condition.

As discussed in [13], accurate trace-driven simulation can be obtained (where possible)
only by eliminating timing dependencies from the trace by abstraction of the operations
that cause them. To eliminate timing dependencies by means of abstraction, we must first
ensure that all necessary information are recorded in a trace, and then to support the
abstraction on the side of the simulator (at the expense of additional simulator
complexity).

In [14] it is discussed whether traces generated from multiple runs of the same program
will yield the same results, and if tracing induced dilation affects simulation accuracy. As
for the first issue, the trace we once obtain can be used for simulation of different
memory architectures, so we do not need multiple simulation runs to obtain different
traces for different architectures. We can thus achieve accurate simulation, if the trace
contains all the necessary information. As for the second issue, Limes produces traces
without the time dilation effect, but we can not guarantee that trace collection techniques
used elsewhere [15] will not introduce the same effect, too. For example, like Limes,
TangoLite, Augmint and other execution-driven simulators that are used for trace
collection, do not introduce time dilation. Traces generated by SimOS or SimICS also do
not suffer from the time dilation effect. This is because they all perform tracing on the
simulated architectures. Microcode modification used in ATUM [16] and a technique of
inline tracing used in MPtrace [17] and TRAPEDS [18] does introduce time dilation, as
they are used to trace programs on a /#ost machine. The dilation effect, however, is often
negligible.

Abstraction

Abstraction of operations that can influence program's execution path means that some
information about them is stored in a trace, so that they can be correctly redone during
the simulation. That way the simulator will no longer be bound to the time stamps when
the execution path is concerned, but will be able to maintain the correct ordering by
redoing the critical timing dependent operations.
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Timing dependent operations include:
» Shared memory references (reads and writes)
» Synchronization operations (such as locks and barriers)
»  Operations for dynamic scheduling of workloads
(like allocation of tasks, loop iterations, or memory)
»  Other timing dependent operations like thread creation

Timing dependent operations other than those that can influence the program execution
path (like those involving real-time clock®) can also be abstracted.

We divide timing dependent operations in two groups: elementary and complex. They are
abstracted in a different way. Elementary operations are those that are realized in the
simulated hardware as primitives. Complex operations are realized through the use of
elementary operations. In our case, elementary operations are shared reads/writes, lock
acquires/releases, and user defined instructions, while barriers are realized as complex
operations.

Timing dependencies can be eliminated from elementary timing dependent operations by
recording their completion time. That way the simulator knows the amount of pollution
introduced by the architecture on which the trace was generated, and eliminates it.

Complex operations are much harder to abstract, depending on how "complex" they are.
Barrier implementation via locks, used in Limes, is an example of a complex operation
that needs a significant support on the side of the trace-driven simulator. Apart from that,
the trace itself must contain rather detailed information on each barrier which has to be
provided by the trace generation environment.

In general, it is up to the trace-collecting tool to save all the necessary information in the
trace. The abstraction technique we use is responsible for performing accurate simulation
based on this information.

Concept of an Ideal Trace

The abstraction of elementary timing dependent operations can be reduced to simply
decreasing their time stamp values for the amount of their completion time. In another
words, time stamps, that implicitly contain information about the execution path, are
reduced to contain only those information and no information on the memory system. The
abstraction can be done this way by postprocessing the trace after it was generated, and
before the trace is used for the simulations, which is much more efficient than if the
whole procedure was done by the simulator at run-time. This also means that no
additional information on those operations is needed in a trace after postprocessing,
which reduces its size. Complex timing dependent operations, on the other hand, must be
handled completely by the simulator at run time.

We based our simulator on ideal traces. 1deal trace is a trace where all elementary timing
dependent operations have already been freed of timing dependencies by adjusting their
time stamp values (so no additional data are needed by the simulator), and where
complex timing dependent operations have been properly abstracted.

4 Lo . . " . . . .
Operations involving real-time clock are timing dependent, because the timing of other operations influences the time that the
clock shows at certain point.
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The easiest way to produce it is to run a simulation using an ideal memory simulator.
With ideal memory simulator every memory request can be completed in a single cycle.
However, lock acquire operations will not be abstracted that way (for they must preserve
the correct global ordering). We fight this inconvenience by forcing every attempt for
gaining a lock to appear in a trace until it is finally gained. After the simulation is over,
during the postprocessing phase, the superfluous lock appearances are eliminated, while
the time stamps of all the references that follow are corrected for the amount of time the
lock had to wait to gain it. This procedure assures a fast way to get an ideal trace, as ideal
memory simulator adds very little time to the simulation overhead.

Simulation Using Tracer

Tracer is Limes' trace-driven simulation tool. By default, Tracer supposes that a trace it
will use as an input is a single file that contains all processors' references. This format is
chosen because it is more efficient regarding storage space than having a separate trace
file for each processor. It allows that one time stamp can be used for a group of
operations that are done in the same cycle on different processors. It is more efficient to
have same number of 1-byte processor labels than 4-byte time stamp integers. Such a
trace is also convenient for visual inspection if it is in textual format. But although this
format is good for keeping traces, it is not good considering the simulation efficiency.
That is why Tracer first invokes a parser that makes ideal traces for each processor,
which are then used as an input to the simulator (see Figure 1). At the same time parser
eliminates superfluous lock requests and corrects time stamps (as a part of the
postprocessing phase of the lock abstraction process), and extracts in a special data
structure information needed by the simulator to support abstraction of barriers. This
process can be done only once, and the obtained ideal traces can be then used for multiple
simulations.

The simulation starts by reading the first reference of each processor's thread and by
scheduling the one with the smallest time stamp, and continues with scheduling requests
until the last one is simulated. The process is quite straightforward, except for the
barriers. In the current implementation each barrier in a trace is just a set of reads, writes,
locks and unlocks. There would be no way to tell if they functionally execute this
synchronization primitive, if they weren't previously annotated during the trace
generation phase. Each barrier is annotated with markers at certain points, which are
recognized by the scheduler, and using those information it can perform the abstraction.
The abstraction principle is quite general and can be used for handling different
implementations of barriers, as well as other complex timing dependent operations.
Another event that must be recorded and abstracted is the creation of a child thread. It is
necessary to abstract those events, to prevent scheduling of child threads before they were
actually created by the parent.

This set of abstracted operations is sufficient to support all statically scheduled
workloads. Abstraction of dynamically scheduled workloads can be supported by
extending the abstraction paradigm used for statically scheduled programs.
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4.3 Memory System Simulator

The memory system simulator is completely independent from the simulation kernel and
from the applications (traces) used to drive the simulations. As mentioned before, it can
be used by both the execution-driven and the trace-driven simulator.

The simulator provides the memory system simulator with a stream of requests. They use
a simple interface to communicate, and the same interface should be used when building
up a simulator for any kind of shared-address space multiprocessor system. How is the
memory simulator realized is of no importance as long as it uses that interface.

SMP Memory Simulator

A model of a bus-based cache coherent symmetrical multiprocessor system (SMP) comes
with Limes. It is a system comprised of N identical processors, with an on-chip (L1)
cache implementing one of the five supported coherency protocols. The processors are
interconnected via bus, and all the communication through bus signals is adequately
mimicked. The main memory module is also connected to the bus. This organization is
represented in Figure 2.

’ 10_buf ‘ ’ 10_buf ‘ 10_buf

BUs

Figure 2. Interconnection of modules in a bus-based cache coherent symmetrical multiprocessor system

Legend: CACHE - cache controller module; M - cache memory module; IO _buf - simple abstract modules
that communicate with simulation kernel, MEMORY - main memory module; BUS - the bus.

Each hardware unit is programmatically represented with a module (a C++ class), and
each module is unaware of the others. That is, the modules do not communicate directly;
rather, they are organized as isolated units, which communicate with the outer world
through input/output ports: a module reads its input ports, performs the operation that
depends on both the information on the input ports and the internal state of the module,
and leaves the result on its output ports. These ports are shown in Figure 3.
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Figure 3. Cache module and input/output ports

Only one (abstract) module in the system is aware of the system topology, and it is not
visible in the picture. This module reads output ports from the modules and writes the
information found there into the input ports of the modules they are connected to,
following certain order and simulating signal flow; it also polls the modules for execution
at proper times. This organization would allow, for example, to easily add the TLB
modules between the cache controllers and the processors without changing other
modules (except the topology module, of course).

This design philosophy resembles greatly the one employed by VHDL. It allowed us to
retain the desired level of accuracy, while preserving the simulation speed and the ability
to change the model easily. This only shows that various approaches are possible using
OOP; the freedom in writing a memory system simulator, however, should be complete.
A guide to designing simulators is a part of the Limes documentation.

The system currently includes detailed examples of five snoopy cache coherence
protocols, namely WTI (Write-Through Invalidate), WIN (Word Invalidate), Berkeley,
Dragon, and MESI. The protocols differ in the operation of their cache controller
modules, while the rest of the modules are functionally equal. Cache controller module is
represented as a finite state machine. Since all modules operate on a cycle-by-cycle basis,
they change their internal state according to the current state and the information on their
input ports. However, these states do not have to be understood in a strict sense as
defined by the finite automata theory. The operation of the module is represented as a
mixture of a flow chart and a state diagram. Modules are easily modifiable and extendible
since they are written in C++, employing the OOP style.

DSM Memory Simulator

A simple model of a distributed shared memory multiprocessor system (DSM) is
developed for Limes. The system comprised of N identical processors. Each processor
has local memory, which is a part of the global distributed shared memory. Several
memory consistency models are implemented in order to simulate the access to DSM.
The system currently includes examples of processor, sequential, release, and lazy release
consistency. The underlying network delays can be simulated in details.
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In order to simulate a DSM multiprocessor system, a specific memory simulator is
developed. Different memory allocation strategy is needed for DSM systems, and some
parts of the old Limes kernel had to be changed. The user can easily change the strategy
for memory allocation (G MALLOC macro). The memory simulator consists of the
following parts: distributed shared memory itself, directory simulator, lock simulator, and
network latency simulator.

Size of the distributed shared memory is statically defined and distributed between the
nodes. Current implementation of memory allocation enables user to specify home node
for memory block to be allocated by the G MALLOC macro. The global and static
variables are by default allocated in the DSM space local to the first node. If the home
node is not explicitly specified in the call to the G MALLOC macro, then it is assumed
that the home node for the new block is the node which called the macro.

The directory simulator implements the memory consistency model for distributed shared
memory access. This simulator is called by the kernel every time the read or write
instruction occurs. The simulator is responsible for all local page or block caching and
acquiring of non-local DSM data. For the implementation of new consistency models this
part needs to be changed.

In DSM systems lock management is quite different than the one in bus based systems,
because there is no bus to make the serialization. There are several different approaches
to implement locks in DSM systems. However, all implementations make data access to
the memory storing the locks sequentially (or at least processor) consistent. This
simulator is called by the kernel every time the lock related operations occurs (acquire or
release).

Network latency simulator can be used to simulate different types of interconnection
networks in details. However, this part can be as simple as making the different constant
delays for access to non-local parts of the distributed shared memory. If the aim of the
research is to simulate the specific network configuration, this is the only part of the
Limes that the researcher has to change.

Virtual Address Space Layout in SMP Limes

When multiple threads of execution are created (for simulation purposes by Limes, in
reality by any of the newer Linux releases), they are defined as regular processes that
share address space with their parent. More formally, page table entries for mapping
virtual addresses to physical have the same values for all the threads. Figure 4 depicts this
situation for an example of four threads.

All the threads share the code segment (of course) and the data segment, and each one
gets its reasonably wide share (say, 256K) of the upper area for the stack. The tops of
their stacks are different. Stacks are private only semantically: a thread could read and
write another threads' stack, but never does so.

This brings us to the point: why do you not have to translate virtual addresses to physical
in simulation? The answer is — because no two different virtual addresses point to the
same physical address, and no two equal virtual addresses point to different physical
addresses.
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% CODE segment CODE segment
| 100KB o
100KB T Tnitialized data L0k | Initialized data
104KB ST | Uninitialized data
10SKB | Uninitialized data 10SKB
HEAP DSM
16.1MB
2MB HEAP for MCM
simator
x 20MB
| Unused - — Unused
—— | STACK for thread #3 —_— STACK for thread #3
| — 1 STACK for thread #2
-
3 GB256K ‘ STACK for thread #2 3 GB256K ‘ .
\ ———————  STACK for thread #1 \ —— 1 STACK for thread #1
3GB-12KB | STACK for thread #0 3GB-12KB ——1  STACK for thread #0
e
3GB7 30p7
Figure 4. Virtual address space layout for multiple F.lgure. 5. Virtual address space layout for
threads in SMP systems (an example). simulation of DSM systems (an example).

Because of that one can assume that these threads of the parallel application are the only
set of processes that are executing on your simulated machine. And one can also assume
that the code segment was really loaded into memory at address zero, and so on.

There are certain leaks in this assumption: first, one does not have 3GB of physical
memory to assume that the stack is physically really placed at 3GB minus something; and
second, in reality, the lowest part of the physical memory would be assigned to system
tables, etc. But since all the allocations occur at page boundaries, it is only a matter of
distribution of block tags in your associative memory in caches, which is unpredictable
anyway, and has little impact on general behavior for 2-way caches or caches with higher
associativity, or larger caches. Still, it would be easy to create a translation function,
should one needs one.

Finally, a note on the ISSHARED(addr) macro: It returns true if (and only if) the
address given belongs to the data segment. Formally, code segment is shared as well; but
it can be read only, and is therefore not important from the aspect of coherence
maintenance. Note that reads from the code segment can occur, although Limes does not
capture instruction fetches; this is because the application may read constants embedded
in the code segment, mainly string constants, for various printf () functions that never
occur in the parallel computation phase. If you really need to know whether an address
belongs to the code segment, say i f (addr < DATA SEGMENT START).

Virtual Address Space Layout in DSM Limes

The consistency models in DSM systems are more relaxed than in SMP systems, and the
DSM memory is less consistent than the SMP memory. In order to accurately simulate
the system, fetching of the non-local data is simulated in details. A node in a DSM
system holds a part of the distributed shared memory, and a part of the local, non-shared
memory used for storing and caching of the non-local data and the directory data used to
maintain the DSM consistency.
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The virtual address space of the DSM simulator is shown in Figure 5. Directory simulator
dynamically allocates and frees the memory in the heap for the simulation of the MCM
during the simulation.

The main difference between the SMP and the DSM simulation virtual address space is
that the space for the DSM is statically allocated at the beginning of the simulation and
the G MALLOC and G_FREE macros are re-implemented in order to correctly allocate
and free the space in the DSM. This enables the user to implement new algorithms for
memory allocation in DSM systems.

5. Limes Complexity and Performance

The simulation kernel of the execution-driven simulator consists of nearly 1800 lines, and
the tool for instrumentation of 1APx86 instructions contains additional 1200 lines. Trace-
driven simulator adds 1500 lines. The SMP model and five snoopy protocols comprise
alltogether some 4000 lines of code. The most complex classes — the detailed cache
controllers, contain on the average some 400 lines. The whole code is profusely
commented. The complete Limes environment (including 9 SPLASH-2 applications)
takes about 820KB (compressed).

The compilation process is rather quick, ranging from 1s for simple memory models up
to 15s for the most complex ones, measured on a Pentium/133.

Limes performance for execution-driven simulations is presented in Table 1. The results
show execution times and slowdowns for four SPLASH-2 programs. Simulations have
been done for 3 different memory models and 2 instrumentation levels for each model.
Abstract model does not invoke the scheduler or the memory simulator. It responds to the
requests right away, but still preserves the global ordering. Ideal and MESI models both
invoke the scheduler and the memory simulator. Ideal memory simulator returns a satisfy
signal in a single cycle for every memory request (read/write), except for synchronization
requests (lock/unlock). MESI is the most complex memory simulator in the current
version of Limes, performing the simulation of a bus-based SMP with MESI cache
coherence protocol. All simulations were performed for 16 processors, where each had a
64KB large, 2 way set-associative cache, with 16B long cache lines.

simulator / level OCEAN FFT LU RADIX Avg.
time [s] | slowd | time|[s] | slowd | time|[s] | slowd | time[s] | slowd slowd
uninstrumented 8 1 2 1 16 1 7 1 1
abstract/level 1 312 39 65 32 863 54 77 11 34
abstract/level 2 684 85 94 47 1120 70 270 38 60
ideal/level 1 729 91 122 61 2438 152 132 19 81
ideal/level 2 1334 166 200 100 3045 190 698 100 139
MEST/level 1 5273 660 850 425 10056 628 737 105 454
MESI/level 2 5694 712 893 447 10297 644 1798 256 515

Table 1. Execution-driven simulation times and slowdowns for 4 SPLASH-2 applications, for various memory

simulator models
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Dimensions of the problems were appropriate: OCEAN worked on a 130x130 grid, FFT
with 65536 complex doubles, LU with a 512x512 matrix and RADIX with 262144
integers. Simulations were done on a 133MHz Pentium PC.

Slowdowns for abstract model indicate the instrumentation overhead introduced by the
simulator, where correct global ordering is still kept. Results show that this is the biggest
source of slowdown compared to other factors, introducing an average slowdown factor
of 34 for level 1 and 60 for level 2 instrumentation. Slowdowns using ideal memory
simulator indicate the scheduling plus the memory simulator invocation overhead. It
additionally slows down the simulation for a factor of 1.7-2.8 (2.4 in average) for level 1,
and for a factor of 2-2.7 (2.3 in average) for level 2 instrumentation. Finally, simulation
of a realistic bus-based SMP system with a MESI protocol indicates the memory
simulator overhead. For level 1 simulations it brings a slowdown that goes from 9.5 to
16.9 (13.3 in average) and for level 2 simulations the slowdown ranges from 6.7 to 9.5
(8.6 in average) in addition to the instrumentation overhead. Pure memory simulator
slowdowns, not counting the scheduling and the simulator invocation overhead, go from
4.1 to 7.9 (5.6 in average) for level 1, and from 2.6 to 4.5 (3.7 in average) for level 2
simulations.

. OCEAN FFT LU RADIX Avg.
simulator / level size overh size overh size overh size overh | overh

[KB] % [KB] % [KB] % [KB] % %

uninstrumented 167.8 0 121.5 0 125.1 0 120.7 0 0
abstract/level 1 237.9 41.7 138.3 11.4 137.8 10.1 129.3 7.1 17.6
abstract/level 2 323.9 93.0 154.7 27.3 158.3 26.5 141.6 17.3 41.0
ideal/level 1 237.9 41.7 138.3 11.4 137.8 10.1 133.4 10.5 18.4
ideal/level 2 323.9 93.0 154.7 27.3 158.3 26.5 145.7 20.7 41.9
MESUlevel 1 357.5 113.0 257.9 121.2 2574 105.7 248.9 106.2 111.5
MESUlevel 2 443.5 164.0 274.3 125.7 277.4 121.7 261.2 116.4 132.0

Table 2. Sizes of execution-driven simulation executables and memory dilation overheads for 4 SPLASH-2
applications, for various memory simulator models.

mem. simulator / OCEAN FFT LU RADIX Avg.
type of simulation time [s] ratio time [s] ratio time [s] ratio time [s] ratio ratio
MESI/trace-driven 145 238 57 237 36 1.80 66 1.94 212
MESI/exec-driven 61 24 20 34

Table 3. Speed of the trace-driven simulation for 4 SPLASH-2 applications compared to the execution-driven
simulation. The table shows simulation times for both simulators (running the same workloads) and their ratio.
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These results are comparable to the TangoLite performance. TangoLite has an average
slowdown of 45 for a simulation with no memory simulator, which compares to an
average Limes slowdown of 34 in the abstract/level 1 case. An average memory
simulator slowdown for Limes is 13.3 for MESUlevel 1, and for a similar memory
architecture TangoLite has a slowdown factor of 17. In total, Limes has a slowdown of
454 compared to the TangoLite average slowdown of 765.

Instrumentation inevitably increases the size of the application. Table 2 shows some
values of memory overhead that Limes introduces. These results can be compared to the
TangoLite overhead, where instrumentation typically increases application static size by
a factor of four, against the factor of 2.1-2.3 for Limes.

Results for trace-driven simulation are presented in Table 3. They show the trace-driven
simulator performance against the execution-driven simulator. Simulation times are
obtained using small, but sufficient examples. OCEAN, FFT, LU, and RADIX binary
traces were 8.7MB, 9.0MB, 18.3MB, and 11.7MB long, respectively. Disk transfer rate is
about 1.0 MB/s. Simulations were performed for 2KB large on-chip cache, for 8
processors.

It is obvious that disk transfer introduces a constant overhead in the simulation. It can be
substantially reduced by using a faster disk. The rest of the time is spent by the simulator.
The version of the trace-driven simulator used to obtain these results is not optimized for
fast disk access. Trace-driven simulation can be potentially twice faster than the
execution-driven simulation with optimal disk access policy.

6. Installation Guide

One does not need any privileges to install and run Limes, modulo the installation of
version 2.6.3 of the GCC compiler, if it is not installed on the system already. The
procedure is described below. For the purpose of simplicity, it will be assumed that the
username is joe, and that the home directory is /home/joe.

6.1. Unpacking the Archive

Limes comes in a single archive, limes*.tgz, where * stands for the current version.
While this procedure describes how to install Limes in a per-user manner, you can also
choose to install it on the system to be globally accessible. To unpack the archive, simply
position in your home directory and do

tar xfz limes*.tgz

After this, a directory tree will be created.

6.2. Setting up the Environment

Limes scripts and makefiles must know where the whole tree is. To communicate this
information, set the environment variable LIMESDIR to point to the root of the tree. In
the example, do

export LIMESDIR=/home/joe/limes # if you use bash, or
setenv LIMESDIR /home/joe/limes # 1f you use tcsh

(You can put them in your .profile or .login for convenience).
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6.3. Installing the GNU C v2.6.3 Compiler

Check the version of your GCC compiler with “gcc -v”. If it reports 2.6.3 or lower, the
installation procedure is over. Otherwise, you will probably have to be root (or to ask
one) to copy the development environment for the GCC 2.6.3 version on your filesystem.
Note: do not really install it, for it will overwrite your current GCC! Just read below
how to copy it onto your filesystem, in a separate, harmless directory! Limes will
know how to find and execute it.

As explained, Limes does various things with the application’s assembly code, and is
therefore strongly dependent on the version of the compiler. But the 2.6.3 version does
not have to be the default compiler on your system, of course. It will reside in a sub-
directory and be called only by the Limes. Here is how to do it:

1) First, get the Development disk series of the Linux distribution
that contains GCC 2.6.3. An example is Slackware 2.2.0.1
2) You will need the following archives:
gcc263.tgz, include.tgz, libe.tgz, libgxx.tgz, 1x128_2.tgz, binutils.tgz.
3) Create a directory, say, /oldgcc.
Change the ownership of this directory to make it belong to a non-privileged user.
Now login as that user and cd to /oldgcc.
4) From now on, everything will be done from the directory /oldgcc as the current, and
all the paths will be relative to that directory.
5) Unpack the archive d1/gcc263.tgz
(like tar xfz /cdrom/slackware/dl/gcc263.tgz)
6) Unpack d6/1x128 2.tgz. Do
(cd usr/src/linux-1.2.8/include; 1n -sf asm-1386 asm)
(cd usr/src; 1In -sf linux-1.2.8 linux)
7) Unpack d2/include.tgz. Do
(cd usr/include;
In -sf /oldgcc/usr/src/linux/include/linux linux)
(cd usr/include;
In -sf /oldgcc/usr/src/linux/include/asm asm)
8) Unpack d5/libc.tgz. Do sh install/doinst.sh
9) Unpack d4/libgxx.tgz. Do sh install/doinst.sh
10) Unpack d8/binutils.tgz

There is one more step: edit limes/globals.make file in your Limes tree, and replace “ifeq

(0,1)” with “ifeq (1,1)”. If you have chosen another directory for GCC2.6.3 instead of
“/oldgcc”, change that in the file, too.

The procedure is now over. It will not affect the rest of your system, except that you will
now have 11MB of disk space less.

If you do not have access to a Linux distribution that contains GCC v.2.6.3 files, you can
download it from the following URL:

http://galeb.etf.bg.ac.yu/~dsm/limes/oldgcc.html

(or you will find a pointer to a site that contains it). It is in fact somewhat reduced, and
requires only 7MB of space (the archive itself is 2.4MB long).
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Figure 6. Mecasuring bus traffic with Limes. This figure shows values (in MB/s) for FFT
application.

7. Experiences with Limes

Limes has been used for a number of studies in the domain of shared-memory
multiprocessors, including SMP and DSM [19] systems.

In one of the studies regarding characterization of parallel applications for DSM systems
[20], Limes was used as a simulation environment, and one originally developed
characterization tool was used to obtain parameters of interest. The data obtained by
Limes were then used in two other studies - as an input to the analytical models of DSM
systems, and to assist researchers in enhancing performance of DSM systems by
improving memory consistency protocols.

In another study regarding SMP systems Limes was used to evaluate influence of
different architectural parameters on the overall system performance. In particular, bus
traffic and miss rate were measured on a system with a MESI cache coherence protocol
while varying the number of processors, cache size and cache block size, and using
different workloads. The results were then used to infer some conclusions regarding the
architectural details. As an example, values for bus traffic are shown in Figure 6 (for FFT
application from the SPLASH-2 suite, supposing 100 MHz processors). Bus traffic
decreases as cache size grows, because there are fewer cache misses that induce bus
traffic. Bus traffic also decreases with the growth of cache block size, because FFT
exhibits spatial locality, so there is no negative influence of false sharing. When the
number of processors grows, bus traffic increases, as there are more requests on the bus.

In the recent study concerning implementation of the lazy release consistency model in
SMP systems, Limes was successfully used to simulate the environment that supports the
proposed improvement in hardware, and to show some quantitative results.
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8. Conclusions

The intentions behind the development of this tool were to facilitate the multiprocessor
studies at the University of Belgrade, and to provide the researchers with the environment
that can be easily adapted to fulfill their particular demands in order to make their study
more effective. The tool can be of benefit to all those who need realistic simulations of
shared-address space multiprocessors (for architecture evaluation, in investigating real-
time systems [21], etc.), and to the researchers in the field of parallel algorithms.

Limes comprises two usable simulators and a complete model of an SMP system,
offering fast and accurate simulation on today so popular PC platforms. It employs some
new abstraction techniques for accurate trace-driven simulation, with a concept that can
be extended even to non-deterministic workloads, if properly supported by the trace
generation tool. On the other side, the execution-driven simulator offers respectable
speed using fully optimized scheduling algorithm. For those that are more interested in
investigating parallel algorithms, Limes offers a relatively fast type of simulation that still
preserves correct global ordering; also, a new paradigm for easy and comprehensible
parallel programming is available.

There is, however, enough room for some improvements and future work. Trace-driven
simulator should optimize its access to the trace references and achieve higher simulation
speed, and trace compaction techniques [22] may be used. It can also be extended to
support abstraction of some other types of timing dependent operations, including
dynamically scheduled workloads. Simulators could be improved to support
multithreading, or thread migration. Simulators of some other shared memory systems
are currently being developed and will be included in the environment. In the end, Limes
should soon be ported to work on other platforms and operating systems.
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